Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-22
Research on Electromagnetic Scattering Characteristics of Complex Bodies Loaded with Metasurfaces
By
Progress In Electromagnetics Research C, Vol. 160, 65-71, 2025
Abstract
This paper presents the design of an absorptive metasurface suitable for complex-shaped targets, achieving precise control over electromagnetic waves, which has been experimentally validated. The metasurface, with a design thickness of only 0.27 mm, maintains sufficient absorption properties under appropriate curvature conditions to ensure the stealth characteristics of the coated target. Through simulation and experimental validation, this study demonstrates the metasurface's strong resonance characteristics near 11.26 GHz and a reduction of approximately 3 dB in far-field radar cross section (RCS) simulation. The experimental test results are almost consistent with the simulation results, confirming the metasurface's effectiveness in reducing the RCS of actual complex models. The research findings provide strong technical support for the radar stealth research of targets.
Citation
Linghui Qi, Fan Ding, Xiaofeng Zhou, Cicheng Wang, Yang Fu, Ruonan Zhao, Junyu Liang, and Helin Yang, "Research on Electromagnetic Scattering Characteristics of Complex Bodies Loaded with Metasurfaces," Progress In Electromagnetics Research C, Vol. 160, 65-71, 2025.
doi:10.2528/PIERC25071603
References

1. Chen, Hou-Tong, Antoinette J. Taylor, and Nanfang Yu, "A review of metasurfaces: Physics and applications," Reports on Progress in Physics, Vol. 79, No. 7, 076401, Jun. 2016.
doi:10.1088/0034-4885/79/7/076401

2. Zhang, Lang, Francesco Monticone, and Owen D. Miller, "All electromagnetic scattering bodies are matrix-valued oscillators," Nature Communications, Vol. 14, No. 1, 7724, 2023.
doi:10.1038/s41467-023-43221-2

3. Cui, Tie Jun, Shuang Zhang, Andrea Alù, Martin Wegener, John Pendry, Jie Luo, Yun Lai, Zuojia Wang, Xiao Lin, Hongsheng Chen, et al., "Roadmap on electromagnetic metamaterials and metasurfaces," Journal of Physics: Photonics, Vol. 6, No. 3, 032502, Jul. 2024.
doi:10.1088/2515-7647/ad1a3b

4. He, Jingwen and Yan Zhang, "Metasurfaces in terahertz waveband," Journal of Physics D: Applied Physics, Vol. 50, No. 46, 464004, Oct. 2017.
doi:10.1088/1361-6463/aa8dc6

5. Kim, Young Ju, Ji Sub Hwang, Young Joon Yoo, Bui Xuan Khuyen, Xianfeng Chen, and YoungPak Lee, "Triple-band metamaterial absorber based on single resonator," Current Applied Physics, Vol. 17, No. 10, 1260-1263, Oct. 2017.
doi:10.1016/j.cap.2017.06.009

6. Zhao, Zhiming, Xiaoping Li, Guoxiang Dong, Xu Liu, and Xiangchao Mu, "Wideband radar cross-section reduction by a double-layer-plasma-based metasurface," Plasma Science and Technology, Vol. 26, No. 6, 065503, 2024.
doi:10.1088/2058-6272/ad2c3e

7. Guan, Jun, Jeong-Eun Park, Shikai Deng, Max J. H. Tan, Jingtian Hu, and Teri W. Odom, "Light-matter interactions in hybrid material metasurfaces," Chemical Reviews, Vol. 122, No. 19, 15177-15203, 2022.
doi:10.1021/acs.chemrev.2c00011

8. Fang, Wei, Xianyou Xie, Shining Sun, Yingjie Wang, Digang Fan, Xiaochun Liu, and Ping Chen, "A broadband radar cross section reduction metasurface based on integrated polarization conversion and scattering cancelation," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 2, e22069, 2020.
doi:10.1002/mmce.22069

9. Li, Qingge, Jin Zhang, Longhai Liu, Chong He, and Weiren Zhu, "Graphene-based optically transparent metasurface for microwave and terahertz cross-band stealth utilizing multiple stealth strategies," Carbon, Vol. 219, 118833, Feb. 2024.
doi:10.1016/j.carbon.2024.118833

10. Sui, Sai, Hua Ma, Jiafu Wang, Yongqiang Pang, Mingde Feng, Zhuo Xu, and Shaobo Qu, "Absorptive coding metasurface for further radar cross section reduction," Journal of Physics D: Applied Physics, Vol. 51, No. 6, 065603, Jan. 2018.
doi:10.1088/1361-6463/aaa3be

11. Zheng, Peixia, Qi Dai, Zile Li, Zhiyuan Ye, Jun Xiong, Hong-Chao Liu, Guoxing Zheng, and Shuang Zhang, "Metasurface-based key for computational imaging encryption," Science Advances, Vol. 7, No. 21, eabg0363, 2021.
doi:10.1126/sciadv.abg0363

12. Wan, Shuai, Kening Qu, Yangyang Shi, Zhe Li, Zejing Wang, Chenjie Dai, Jiao Tang, and Zhongyang Li, "Multidimensional encryption by chip-integrated metasurfaces," ACS Nano, Vol. 18, No. 28, 18693-18700, Jul. 2024.
doi:10.1021/acsnano.4c05724

13. Watanabe, Takuma, "Image-based radar cross section synthesis for a cluster of multiple static targets," IEEE Transactions on Instrumentation and Measurement, Vol. 72, 1-13, 2023.
doi:10.1109/tim.2023.3246489

14. Fu, Haosheng, Fengzhou Dai, and Ling Hong, "Metasurface aperture design for far-field computational microwave imaging beyond Rayleigh diffraction limitations," IEEE Transactions on Microwave Theory and Techniques, Vol. 72, No. 1, 223-241, Jan. 2024.
doi:10.1109/tmtt.2023.3291408

15. Sun, Guang, Liwen Zhu, Shiqi Xing, Junjie Wang, Dejun Feng, and Xuesong Wang, "SAR imaging modulation based on time-modulated corner reflector with wide-angle domain control," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 3157-3161, Dec. 2023.
doi:10.1109/lawp.2023.3312256

16. Lee, Jae-In and Dong-Wook Seo, "Improvement of computational efficiency for fast ISAR image simulation through nonuniform fast Fourier transform," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 12, 2402-2406, Dec. 2021.
doi:10.1109/lawp.2021.3113314

17. Pitilakis, Alexandros, Dimitrios Tyrovolas, Prodromos-Vasileios Mekikis, Sotiris A. Tegos, Alexandros Papadopoulos, Ageliki Tsioliaridou, Odysseas Tsilipakos, Dionysios Manessis, Sotiris Ioannidis, Nikolaos V. Kantartzis, Ian F. Akyildiz, and Christos K. Liaskos, "On the mobility effect in UAV-mounted absorbing metasurfaces: A theoretical and experimental study," IEEE Access, Vol. 11, 79777-79792, 2023.
doi:10.1109/access.2023.3299379

18. Li, Lianlin, Hanting Zhao, Che Liu, Long Li, and Tie Jun Cui, "Intelligent metasurfaces: Control, communication and computing," Elight, Vol. 2, No. 1, 7, 2022.
doi:10.1186/s43593-022-00013-3

19. Brizi, Danilo, Nunzia Fontana, Sami Barmada, and Agostino Monorchio, "An accurate equivalent circuit model of metasurface-based wireless power transfer systems," IEEE Open Journal of Antennas and Propagation, Vol. 1, 549-559, 2020.
doi:10.1109/ojap.2020.3028297

20. Shi, Haoyang, Jie Tian, Nengfu Chen, and Weiren Zhu, "Wideband high-efficiency scattering reduction in a graphene based optically transparent and flexible metasurface," Carbon, Vol. 225, 119150, May 2024.
doi:10.1016/j.carbon.2024.119150

21. Shah, Manthan A., Çağatay Tokgöz, and Babajide A. Salau, "Radar cross section prediction using iterative physical optics with physical theory of diffraction," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 6, 4683-4690, Jun. 2022.
doi:10.1109/TAP.2021.3137202

22. Cong, Zhou, Zi He, and Da-Zhi Ding, "RCS calculation of electrically large targets by iterative bidirectionally ray tracing method," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 12, 2427-2431, Dec. 2022.
doi:10.1109/lawp.2022.3196019

23. Vitucci, Enrico Maria, Matteo Albani, Silvi Kodra, Marina Barbiroli, and Vittorio Degli-Esposti, "An efficient ray-based modeling approach for scattering from reconfigurable intelligent surfaces," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 3, 2673-2685, 2024.
doi:10.1109/tap.2024.3359288

24. Su, Donglin, Shuo Cui, Shunchuan Yang, Cheng Cao, and Yaoyao Li, "An efficient scheme for quasi-dynamic RCS Estimation of multiple targets based on polarization scattering matrices," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 3182-3186, Dec. 2023.
doi:10.1109/lawp.2023.3312772

25. Li, Shixi, Zi He, Dazhi Ding, Pengfei Gu, Jiaqi Liu, and Xia Ai, "Efficient EM scattering analysis of uncertain inhomogeneous medium," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 6, 1178-1182, Jun. 2022.
doi:10.1109/lawp.2022.3161031

26. Guo, Lixin, Donghai Xiao, Muyu Hou, Yanchun Zuo, and Wei Liu, "Fast adaptive modeling of frequency-domain RCS responses by gaussian process regression," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 3117-3121, Dec. 2023.
doi:10.1109/lawp.2023.3311098

27. He, Zi, Shi-Xi Li, and Da-Zhi Ding, "Uncertainty EM scattering prediction for inhomogeneous dielectric bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 882-891, Jan. 2023.
doi:10.1109/tap.2022.3209718

28. Zhu, Fang-Yin, Shui-Rong Chai, Yu-Feng Zou, Zhen-Xiang He, and Li-Xin Guo, "An efficient and accurate RCS reconstruction technique using adaptive TLS-ESPRIT algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 1, 49-53, Jan. 2024.
doi:10.1109/lawp.2023.3317057

29. Shin, Hokeun, Daeyeong Yoon, Dong-Yeop Na, and Yong Bae Park, "Analysis of radome cross section of an aircraft equipped with a FSS radome," IEEE Access, Vol. 10, 33704-33712, 2022.
doi:10.1109/access.2022.3162262

30. Chai, Shui-Rong, Zhen-Xiang He, Pu-Kun Dai, Fang-Yin Zhu, and Yu-Feng Zou, "Research on EM scattering characteristics of targets in land-sea junction area based on the hybrid method of SBR-MECA-PTD," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 12, 2817-2820, Dec. 2023.
doi:10.1109/lawp.2023.3299990

31. Gao, Hong-Wei, Xi-Min Xin, Qi Jian Lim, Shu Wang, and Zhen Peng, "Efficient full-wave simulation of large-scale metasurfaces and metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 1, 800-811, Jan. 2024.
doi:10.1109/tap.2023.3337990

32. Cai, Zhihao, Mengbo Hua, Wei Gong, and Siyuan He, "An efficient method for analyzing electromagnetic scattering of complex targets coated with anisotropic metal composites," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 5, 1413-1417, May 2024.
doi:10.1109/lawp.2023.3323651

33. Chen, Xudong, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco, Jr., and Jin Au Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/physreve.70.016608

34. Epstein, Ariel and George V. Eleftheriades, "Huygens' metasurfaces via the equivalence principle: Design and applications," Journal of the Optical Society of America B, Vol. 33, No. 2, A31-A50, 2016.
doi:10.1364/josab.33.000a31

35. Su, Jianxun, Wenyu Li, Meijun Qu, Hang Yu, Zengrui Li, Kainan Qi, and Hongcheng Yin, "Ultrawideband RCS reduction metasurface based on hybrid mechanism of absorption and phase cancellation," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 10, 9415-9424, Oct. 2022.
doi:10.1109/tap.2022.3184538

36. Jia, Yongtao, Ying Liu, Y. Jay Guo, Kun Li, and Shuxi Gong, "A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 6, 3291-3295, 2017.
doi:10.1109/tap.2017.2694879

37. CST Studio Suite "Computer simulation technology AG," Darmstadt, Germany, 2022.