Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-28
SADEA-Tuned Broadband Circularly Polarized Metasurface-Inspired Monopole Antenna for Next-Generation Wireless Applications
By
Progress In Electromagnetics Research C, Vol. 161, 66-75, 2025
Abstract
In this investigation, a broad circularly polarized high-gain SADEA-tuned quasi-TM30-mode excited metasurface antenna at sub-6 GHz 5G band is shown. A linearly polarized (LP) monopole antenna in stage-1 with conventional partial ground is proposed. Then, in stage-2, a stair-cased partial ground plane is transformed to witness circular polarization (CP), an expanded part of stage-1. In stage-3 for next-generation wireless applications, the main objective is to improve the CP gain, impedance (10-dB BW), and axial bandwidths (3-dB BW), which will make it a good candidate for RF energy harvesting systems, a potential feature for next-generation wireless application. In this case, the application of a metasurface layer is an important step, significantly optimized by using AI-tuned SADEA method. The SADEA-tuned metasurface layer at 45 mm right above the λ/4 monopole radiator is integrated as a multi-layered structure. Finally, it is fabricated on a low-cost FR-4 substrate with thickness of 1.6 mm and offers a measured 116.3% 10-dB BW, 20.98% 3-dB BW, CP gain peak > 7.5 dBic, and antenna efficiency > 85% in the desired band of operation. With the introduction of SADEA optimization method not only the complexity was reduced while designing the metasurface layer, but simultaneously to the best of author’s knowledge, this is the first time such type of approach is followed towards the design of circularly polarized metasurface antenna for next-generation wireless applications.
Citation
Iltapawar Tirupati Laxman, Harikrishna Paik, Bikash Ranjan Behera, and Mohammed H. Alsharif, "SADEA-Tuned Broadband Circularly Polarized Metasurface-Inspired Monopole Antenna for Next-Generation Wireless Applications," Progress In Electromagnetics Research C, Vol. 161, 66-75, 2025.
doi:10.2528/PIERC25071701
References

1. Alsharif, Mohammed H., Rosdiadee Nordin, Nor Fadzilah Abdullah, and Anabi Hilary Kelechi, "How to make key 5G wireless technologies environmental friendly: A review," Transactions on Emerging Telecommunications Technologies, Vol. 29, No. 1, e3254, 2018.
doi:10.1002/ett.3254

2. Chen, Zhi Ning, Xianming Qing, Wei Liu, Huiwen Sheng, Teng Li, and Bo Zhang, "Toward metantennas: Metasurface antennas shaping wireless communications," IEEE Communications Magazine, Vol. 62, No. 8, 94-99, 2024.
doi:10.1109/mcom.001.2400047

3. Javanshir, Amir Mohammad, Tohid Aribi, Tohid Sedghi, and Arash Kalami, "High performance and compact antenna with new scheme for broadband circular polarisation applications," International Journal of Electronics Letters, Vol. 13, No. 1, 35-46, 2025.
doi:10.1080/21681724.2024.2372737

4. Meher, Priya R. and Sanjeev K. Mishra, "Design and development of mathematical equivalent circuit model of broadband circularly polarized semi-annular ring shaped monopole antenna," Progress In Electromagnetics Research C, Vol. 129, 73-87, 2023.
doi:10.2528/pierc22120909

5. Elahi, Manzoor, Amir Altaf, Youngoo Yang, Kang-Yoon Lee, and Keum Cheol Hwang, "Circularly polarized dielectric resonator antenna with two annular vias," IEEE Access, Vol. 9, 41123-41128, 2021.
doi:10.1109/access.2021.3064026

6. Ameen, Mohammad and Raghvendra Chaudhary, "Metamaterial circularly polarized antennas: Integrating an epsilon negative transmission line and single split ring-type resonator," IEEE Antennas and Propagation Magazine, Vol. 63, No. 4, 60-77, 2021.
doi:10.1109/map.2019.2950920

7. Tran, Huy Hung, Cong Danh Bui, Nghia Nguyen-Trong, and Truong Khang Nguyen, "A wideband non-uniform metasurface-based circularly polarized reconfigurable antenna," IEEE Access, Vol. 9, 42325-42332, 2021.
doi:10.1109/access.2021.3066182

8. Dong, Jian, Rigeng Wu, Xia Yuan, and Jinjun Mo, "A low-profile broadband circularly polarized metasurface antenna based on characteristic mode analysis," Waves in Random and Complex Media, Vol. 35, No. 2, 2411-2429, 2025.
doi:10.1080/17455030.2022.2044091

9. Chi, Yuan, "A new wideband CP antenna with a single-layer metasurface," Electromagnetics, Vol. 42, No. 8, 616-623, 2022.
doi:10.1080/02726343.2022.2161708

10. Chai, Kun, Zhi Li, Yajuan Zhao, Liping Han, Guorui Han, and Yufeng Liu, "A low-profile wideband circularly polarized metasurface antenna based on characteristic mode analysis," International Journal of Microwave and Wireless Technologies, Vol. 16, No. 2, 244-251, 2024.
doi:10.1017/s1759078723000909

11. Rana, Sourabh and Priyanka Jain, "Utilizing characteristics mode analysis for designing a miniaturised high-gain metasurface antenna with wideband circular polarization and reduced scattering," Journal of Electromagnetic Waves and Applications, Vol. 38, No. 8, 842-859, Apr. 2024.
doi:10.1080/09205071.2024.2340650

12. Pang, Hui, Jianping Zhao, and Juan Xu, "Miniaturized circularly polarized metasurface antenna based on characteristic mode analysis," Microwave and Optical Technology Letters, Vol. 66, No. 1, e33983, 2024.
doi:10.1002/mop.33983

13. Liu, Bo, Hadi Aliakbarian, Zhongkun Ma, Guy A. E. Vandenbosch, Georges Gielen, and Peter Excell, "An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 7-18, 2014.
doi:10.1109/tap.2013.2283605

14. Liu, Bo, Slawomir Koziel, and Nazar Ali, "SADEA-II: A generalized method for efficient global optimization of antenna design," Journal of Computational Design and Engineering, Vol. 4, No. 2, 86-97, 2017.
doi:10.1016/j.jcde.2016.11.002

15. Liu, Yushi, Bo Liu, Masood Ur-Rehman, Muhammad Ali Imran, Mobayode O. Akinsolu, Peter Excell, and Qiang Hua, "An efficient method for antenna design based on a self-adaptive Bayesian neural network-assisted global optimization technique," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 12, 11375-11388, 2022.
doi:10.1109/tap.2022.3211732

16. Behera, Bikash, Sanjeev Mishra, Mohammed H. Alsharif, Peerapong Uthansakul, and Monthippa Uthansakul, "A metasurface-inspired printed monopole antenna for 5G and RF energy harvesting application," Engineering Science and Technology, An International Journal, Vol. 51, 101638, 2024.
doi:10.1016/j.jestch.2024.101638