Vol. 162
Latest Volume
All Volumes
PIERC 163 [2025] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-09
Power Line Communication: Extreme Noise Events Modelling and Characterization Over Low-Voltage Networks
By
Progress In Electromagnetics Research C, Vol. 162, 242-251, 2025
Abstract
This paper examines the use of extreme value theory (EVT) in modelling and forecasting extreme noise events in Power Line Communication (PLC) networks. PLC noise is characterised by random, high-amplitude noise spikes that significantly degrade PLC performance. As such, EVT, which is a branch of statistics that is concerned with modelling and analysing extreme deviations of random processes, is particularly useful for modelling PLC noise impulsive noise events, which are random since it focuses on the tail behaviour of the noise distribution. In this proposed EVT analysis, the probability of extreme noise events is estimated from the high-amplitude spikes. The heavy-tailed characteristics of PLC noise are estimated by the shape parameter (ξ) to model impulsive noise distributions, and the Block Maxima (BM) approach is employed to handle the worst-case PLC noise events lasting over long periods, consequently estimating the maximum expected noise over time. Lastly, the peaks over threshold (POT) method is proposed to handle the threshold exceedance probability, which can be used for threshold selection for PLC noise suppression.
Citation
Steven O. Awino, and Bakhe Nleya, "Power Line Communication: Extreme Noise Events Modelling and Characterization Over Low-Voltage Networks," Progress In Electromagnetics Research C, Vol. 162, 242-251, 2025.
doi:10.2528/PIERC25071703
References

1. Middleton, David, "Statistical-physical models of electromagnetic interference," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-19, No. 3, 106-127, 1977.
doi:10.1109/temc.1977.303527

2. Middleton, D., "Non-Gaussian noise models in signal processing for telecommunications: New methods an results for class A and class B noise models," IEEE Transactions on Information Theory, Vol. 45, No. 4, 1129-1149, 1999.
doi:10.1109/18.761256

3. Middleton, David, "Procedures for determining the parameters of the first-order canonical models of Class A and Class B electromagnetic interference [10]," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-21, No. 3, 190-208, 1979.
doi:10.1109/temc.1979.303731

4. Zimmermann, M. and K. Dostert, "Analysis and modeling of impulsive noise in broad-band powerline communications," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 1, 249-258, 2002.
doi:10.1109/15.990732

5. Rouissi, F., V. Degardin, A. Ghazel, M. Lienard, and F. Gauthier, "Impulsive noise modelling using markov chains in indoor-environment-comparison with stochastic model," 2005 12th IEEE International Conference on Electronics, Circuits and Systems, 1-4, Gammarth, Tunisia, 2005.
doi:10.1109/icecs.2005.4633516

6. Ndo, Gaëtan, Fabrice Labeau, and Marthe Kassouf, "A Markov-Middleton model for bursty impulsive noise: Modeling and receiver design," IEEE Transactions on Power Delivery, Vol. 28, No. 4, 2317-2325, 2013.
doi:10.1109/tpwrd.2013.2273942

7. Awino, Steven O., T. J. Afullo, Modisa Mosalaosi, and Peter O. Akuon, "Measurements and statistical modelling for time behaviour of power line communication impulsive noise," International Journal on Communications Antenna and Propagation (IRECAP), Vol. 9, No. 4, 236-246, 2019.
doi:10.15866/irecap.v9i4.16094

8. Ghosh, M., "Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems," IEEE Transactions on Communications, Vol. 44, No. 2, 145-147, 1996.
doi:10.1109/26.486604

9. Laguna-Sanchez, Gerardo and Miguel Lopez-Guerrero, "On the use of alpha-stable distributions in noise modeling for PLC," IEEE Transactions on Power Delivery, Vol. 30, No. 4, 1863-1870, 2015.
doi:10.1109/tpwrd.2015.2390134

10. Benaissa, A., A. Abdelmalek, and M. Feham, "Reliability and performance improvement of MIMO-PLC system under alpha-stable noise," International Journal on Communications Antenna and Propagation (IRECAP), Vol. 6, No. 3, 182-187, 2016.
doi:10.15866/irecap.v6i3.9118

11. Gianaroli, Fabio, Fabrizio Pancaldi, Enrico Sironi, Marco Vigilante, Giorgio Matteo Vitetta, and Alessandro Barbieri, "Statistical modeling of periodic impulsive noise in indoor power-line channels," IEEE Transactions on Power Delivery, Vol. 27, No. 3, 1276-1283, 2012.
doi:10.1109/tpwrd.2012.2188910

12. Awino, S. O., T. J. O. Afullo, M. Mosalaosi, and P. O. Akuon, "Time series analysis of impulsive noise in power line communication (PLC) networks," SAIEE Africa Research Journal, Vol. 109, No. 4, 237-249, 2018.
doi:10.23919/saiee.2018.8538337

13. Chelangat, Florence and Thomas Joachim Odhiambo Afullo, "Time series modelling of powerline communication impulsive noise: Queuing theory approach," Progress In Electromagnetics Research C, Vol. 150, 157-168, 2024.
doi:10.2528/pierc24090401

14. Jacob, Maria, Cláudia Neves, and Danica Vukadinović Greetham, Forecasting and Assessing Risk of Individual Electricity Peaks, Springer Nature, 2020.
doi:10.1007/978-3-030-28669-9

15. Longin, Francois, Extreme Events in Finance: A Handbook of Extreme Value Theory and Its Applications, John Wiley & Sons, 2016.

16. Kotz, Samuel and Saralees Nadarajah, Extreme Value Distributions: Theory and Applications, World Scientific, 2000.

17. Beirlant, Jan, Yuri Goegebeur, Johan Segers, and Jozef L. Teugels, Statistics of Extremes: Theory and Applications, John Wiley & Sons, 2006.

18. Meng, H., Y. L. Guan, and S. Chen, "Modeling and analysis of noise effects on broadband power-line communications," IEEE Transactions on Power Delivery, Vol. 20, No. 2, 630-637, 2005.
doi:10.1109/tpwrd.2005.844349

19. Vines, Roger M., H. Joel Trissell, Louis J. Gale, and J. Ben O'neal, "Noise on residential power distribution circuits," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-26, No. 4, 161-168, 1984.
doi:10.1109/temc.1984.304217

20. Antoniali, Massimo, Fabio Versolatto, and Andrea M. Tonello, "An experimental characterization of the PLC noise at the source," IEEE Transactions on Power Delivery, Vol. 31, No. 3, 1068-1075, 2016.
doi:10.1109/TPWRD.2015.2452939

21. Tlich, Mohamed, Ahmed Zeddam, Fabienne Moulin, and Frederic Gauthier, "Indoor power-line communications channel characterization up to 100 MHz --- Part II: Time-frequency analysis," IEEE Transactions on Power Delivery, Vol. 23, No. 3, 1402-1409, 2008.
doi:10.1109/tpwrd.2007.916095

22. Emleh, A., A. S. de Beer, H. C. Ferreira, and A. J. Han Vinck, "The impact of the CFL lamps on the power-line communications channel," 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, 225-229, Johannesburg, South Africa, 2013.
doi:10.1109/ISPLC.2013.6525854

23. Emleh, A., A. S. de Beer, H. C. Ferreira, and A. J. Han Vinck, "The influence of fluorescent lamps with electronic ballast on the low voltage PLC network," 2014 IEEE 8th International Power Engineering and Optimization Conference (PEOCO2014), 276-280, Langkawi, Malaysia, 2014.
doi:10.1109/PEOCO.2014.6814439

24. ETS, , Powerline telecommunications (PLT); Coexistence between PLT modems and short wave radio broadcasting services, Available: https://www.etsi.org/deliver/etsi_ts/102500_102599/102578/01.02.01_60/ts_102578v010201p.pdf.