Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-23
Efficiency Analysis of a Flux Switching Permanent Magnet Machine with Low Iron Loss Non-Oriented Electrical Steel Materials and Rotor Structure
By
Progress In Electromagnetics Research C, Vol. 160, 84-93, 2025
Abstract
This study presents a structure design methodology to analyze the operational efficiency of a flux switching permanent magnet machine utilizing non-oriented electrical steel materials. First, iron losses of non-oriented electrical steel materials assembled by bonding and welding stacking methods ware tested, and the comparison results demonstrated that the bonded stator core exhibited lower iron losses than the welded stator counterpart. Then, the proposed non-oriented electrical steel material 35SW360 was implemented in the straighted-rotor core of flux switching permanent magnet machine, and the simulation results shown that both the amplitudes and harmonics of induced electromotive force with 35SW360 was almost identical to the standard non-oriented electrical steel material DW360_50. Finally, prototype flux switching permanent magnet machine with straighted-rotor and skewed-rotor including above two non-oriented electrical steel materials was manufactured and tested. Both the simulation analysis and hardware test results revealed that the flux switching permanent magnet machine with skewed-rotor achieved higher efficiency than the straighted-rotor design. Consequently, the proposed non-oriented electrical steel material 35SW360 and skewed-rotor design illustrate a potential solution for efficiency improvement of flux switching permanent magnet machine.
Citation
Zhongxian Chen, Lei Huang, Mingjie Wang, and Hongxing Zheng, "Efficiency Analysis of a Flux Switching Permanent Magnet Machine with Low Iron Loss Non-Oriented Electrical Steel Materials and Rotor Structure," Progress In Electromagnetics Research C, Vol. 160, 84-93, 2025.
doi:10.2528/PIERC25072407
References

1. Soulard, J., X. Y. Ma, E. Griffin, and B. Silvester, "Repeatability of tests for validation of iron loss models in electrical machines," IEEE Transactions on Magnetics, Vol. 59, No. 11, 1-10, 2023.
doi:10.1109/tmag.2023.3276192

2. Kano, Yoshiaki, Hirokazu Kanekiyo, and Yohei Suzuki, "Traction drive motor for small EVs using mass producible amorphous laminated cores," Electrical Engineering in Japan, Vol. 217, No. 4, e23484, 2024.
doi:10.1002/eej.23484

3. Wi, Chang-Hyun, Ji-Yeon Kim, Jae-Wan Choi, Han-Kyeol Yeo, and Dong-Kuk Lim, "Optimal design of PMa-SynRM for electric vehicles using grain-oriented electrical steel and surrogate model based on stacking ensemble," Journal of Electrical Engineering & Technology, Vol. 18, No. 2, 991-1001, 2023.
doi:10.1007/s42835-022-01362-2

4. Gargalis, Leonidas, Vincenzo Madonna, Paolo Giangrande, Roberto Rocca, Mark Hardy, Ian Ashcroft, Michael Galea, and Richard Hague, "Additive manufacturing and testing of a soft magnetic rotor for a switched reluctance motor," IEEE Access, Vol. 8, 206982-206991, 2020.
doi:10.1109/access.2020.3037190

5. Demian, Cristian, Abdenour Abdelli, Jean-Philippe Lecointe, and Gianluca Zito, "Optimization of the tooth geometry for axial flux machine with non-grain oriented and grain oriented electrical steel," 2025 IEEE International Electric Machines & Drives Conference (IEMDC), 1129-1134, Houston, TX, USA, May 2025.
doi:10.1109/IEMDC60492.2025.11061140

6. Ozdincer, B. and M. Aydin, "Design of innovative radial flux permanent magnet motor alternatives with non-oriented and grain-oriented electrical steel for servo applications," IEEE Transactions on Magnetics, Vol. 58, No. 2, 1-4, 2022.
doi:10.1109/tmag.2021.3078090

7. Mix, Torsten, Michael Gröninger, Zhengyi Jin, Kay Reuter, Thomas Studnitzky, Inge Lindemann-Geipel, and Thomas Weißgärber, "Additive manufacturing of low loss electrical steel sheets for high efficiency electrical devices," IEEE Transactions on Transportation Electrification, Vol. 9, No. 4, 5226-5231, 2023.
doi:10.1109/tte.2023.3298488

8. Shi, Minxia, Aici Qiu, and Junhao Li, "Vector magnetic properties of electrical steel sheet under DC-biased flux and rotating magnetic fields of varying frequencies," IEEE Transactions on Magnetics, Vol. 57, No. 9, 1-8, 2021.
doi:10.1109/tmag.2021.3101052

9. Shi, Minxia, Xuanrui Zhang, Aici Qiu, and Junhao Li, "The FEM calculation considering vector magnetic properties of electrical steel sheet under DC-biased field," IEEE Transactions on Magnetics, Vol. 56, No. 1, 1-4, 2020.
doi:10.1109/tmag.2019.2951421

10. Xu, Fang, Handong Ren, and Hongwu Zhan, "Enhanced efficiency in permanent magnet synchronous motor drive systems with MEPA control based on an improved iron loss model," Electronics, Vol. 13, No. 5, 858, 2024.
doi:10.3390/electronics13050858

11. Guo, Zhen, Di Tong, Yan-Cheng Zhao, Shuang Chen, Ji-Qiu Nai, and Ming-Hao Ye, "Efficiency optimization of variable iron loss resistance asynchronous motor based on grey wolf optimization algorithm," Journal of Electrical Engineering & Technology, Vol. 19, No. 1, 485-493, 2024.
doi:10.1007/s42835-023-01561-5

12. Haddad, Reemon Z., "Iron loss analysis in axial flux permanent magnet synchronous motors with soft magnetic composite core material," IEEE Transactions on Energy Conversion, Vol. 37, No. 1, 295-303, 2022.
doi:10.1109/tec.2021.3098824

13. Nicolás-Martín, Carolina, Miguel E. Montilla-DJesus, David Santos-Martin, and Jorge Martínez-Crespo, "Computationally efficient and loss-minimizing model predictive control for induction motors in electric vehicle applications," Energies, Vol. 18, No. 6, 1444, 2025.
doi:10.3390/en18061444

14. Yan, Changhao, Haiyang Hu, Zhiye Li, Lubin Zeng, and Ruilin Pei, "Performance study of high-speed permanent magnet synchronous motor with amorphous alloy considering temperature effect," Materials, Vol. 17, No. 8, 1928, 2024.
doi:10.3390/ma17081928

15. Khan, Talha Ahmed, Muhammad Alam, Safdar Ali Rizvi, Zeeshan Shahid, and M. S. Mazliham, "Introducing AI applications in engineering education (PBL): An implementation of power generation at minimum wind velocity and turbine faults classification using AI," Computer Applications in Engineering Education, Vol. 32, No. 1, e22691, 2024.
doi:10.1002/cae.22691

16. Cui, Yingjie, Munawar Faizan, and Zhongxian Chen, "Back EMF waveform comparison and analysis of two kinds of electrical machines," World Electric Vehicle Journal, Vol. 12, No. 3, 149, 2021.
doi:10.3390/wevj12030149

17. Su, Peng, Wei Hua, Zhongze Wu, Zhe Chen, Gan Zhang, and Ming Cheng, "Comprehensive comparison of rotor permanent magnet and stator permanent magnet flux-switching machines," IEEE Transactions on Industrial Electronics, Vol. 66, No. 8, 5862-5871, 2019.
doi:10.1109/tie.2018.2875636

18. Chen, Zhongxian and Yingjie Cui, "Numerical simulation and experimental validation of a flux switching permanent magnet memory machine," IEEE Access, Vol. 8, 194904-194911, 2020.
doi:10.1109/access.2020.3033778