Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-21
Robust and Flexible Synthesis of Equi-Ripple Multiband Filtering Functions in the Pole-Zero Form
By
Progress In Electromagnetics Research C, Vol. 160, 39-47, 2025
Abstract
This paper presents a numerical iterative approach to synthesizing multiband filtering functions that can realize equi-ripple in-band responses and enforce the same return loss (RL) level across all passbands. By iteratively updating the reflection zeros (RZs) and some additional transmission zeros (TZs), the multiband filtering function can be constructed to give an equi-ripple characteristic and ensure the same RL levels in all passbands. The advantages of the proposed method include that equal RL level in all passbands can be enforced, and the numerical stability is improved over existing methods. The proposed method can be used to synthesize symmetric or asymmetric multiband filter (MBF) responses with an arbitrary number of passbands. Two synthesis examples are provided. The first example is a tri-band filter (TBF) with an RL level of 23 dB. Its passband frequency ranges are (-1, -0.7), (-0.15, 0.15), (0.7, 1) rad/s, in the normalized frequency domain, and the numbers of poles in the three passbands are 5, 4, and 5, respectively. In the second example, a dual-band waveguide filter (DBF) with four poles in each passband is synthesized and designed. The frequency ranges of the two passbands are (11.8, 11.95), (12.085, 12.2) GHz. Both simulated and measured RL levels of the filter are 22 dB. The measured insertion loss 0.73 dB in the lower passband and 0.75 dB in the upper passband. The simulated and measured results are in excellent agreement with the theoretical response, thus verifying the proposed synthesis method.
Citation
Sai Peng, Jiyuan Fan, Ping Zhao, Nan Shen, Jinzhu Zhou, and Qingqiang Wu, "Robust and Flexible Synthesis of Equi-Ripple Multiband Filtering Functions in the Pole-Zero Form," Progress In Electromagnetics Research C, Vol. 160, 39-47, 2025.
doi:10.2528/PIERC25072502
References

1. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

2. Cameron, Richard J., "Advanced synthesis techniques for microwave filters," ZTE Communications, Vol. 9, No. 2, 27, 2011.

3. Djianga, Anicet Nzepang, Clement Mbinack, Guy Ayissi Eyebe, Ping Zhao, and Jean Sire Armand Eyebe Fouda, "Design and simultaneous analytical optimization of microwave filters with superimposed rectangular cavities for radar applications," AEU --- International Journal of Electronics and Communications, Vol. 188, 155572, 2025.
doi:10.1016/j.aeue.2024.155572

4. Cameron, R. J., Ming Yu, and Ying Wang, "Direct-coupled microwave filters with single and dual stopbands," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3288-3297, 2005.
doi:10.1109/TMTT.2005.859032

5. Macchiarella, G. and S. Tamiazzo, "Design techniques for dual-passband filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, 3265-3271, 2005.
doi:10.1109/tmtt.2005.855749

6. Lee, Juseop and Kamal Sarabandi, "Design of triple-passband microwave filters using frequency transformations," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 187-193, 2008.
doi:10.1109/tmtt.2007.912206

7. Di, Hao, Bian Wu, Xin Lai, and Chang-Hong Liang, "Synthesis of cross-coupled triple-passband filters based on frequency transformation," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 432-434, 2010.
doi:10.1109/lmwc.2010.2049829

8. Chen, Xianhong, Lijun Zhang, Can Xu, Zhanqi Zheng, and Xueping Jiang, "Dual-band filter synthesis based on two low-pass prototypes," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 903-905, 2017.
doi:10.1109/lmwc.2017.2746663

9. Chen, Xianhong, "Synthesis of multi‐band filters based on multi‐prototype transformation," IET Microwaves, Antennas & Propagation, Vol. 15, No. 2, 103-114, 2021.
doi:10.1049/mia2.12026

10. Bila, S., R. J. Cameron, P. Lenoir, V. Lunot, and F. Seyfert, "Chebyshev synthesis for multi-band microwave filters," 2006 IEEE MTT-S International Microwave Symposium Digest, 1221-1224, San Francisco, CA, USA, 2006.
doi:10.1109/MWSYM.2006.249430

11. Lunot, V., S. Bila, and F. Seyfert, "Optimal synthesis for multi-band microwave filters," 2007 IEEE/MTT-S International Microwave Symposium, 115-118, Honolulu, HI, USA, 2007.
doi:10.1109/MWSYM.2007.380268

12. Lunot, Vincent, Fabien Seyfert, StÉphane Bila, and Abdallah Nasser, "Certified computation of optimal multiband filtering functions," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 105-112, 2008.
doi:10.1109/tmtt.2007.912234

13. Macchiarella, Giuseppe, "“Equi-ripple” synthesis of multiband prototype filters using a Remez-like algorithm," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 5, 231-233, 2013.
doi:10.1109/lmwc.2013.2253600

14. Zhao, Ping and Ke Wu, "Iterative synthesis of equi-ripple dual-band filtering functions with one additional transmission zero," 2019 IEEE MTT-S International Microwave Symposium (IMS), 1351-1354, Boston, MA, USA, 2019.
doi:10.1109/MWSYM.2019.8701083

15. Ren, Xiaohui, Yuxing He, and Liguo Sun, "Advanced iterative synthesis of equiripple dual-band filters with fully prescribed performance," IEEE Microwave and Wireless Technology Letters, Vol. 33, No. 9, 1255-1257, 2023.
doi:10.1109/lmwt.2023.3256526

16. Zhao, Xiaoshuang, Yuxing He, and Liguo Sun, "Robust synthesis of multiband filters based on transmission zero redundancy method," IEEE Microwave and Wireless Technology Letters, Vol. 35, No. 8, 1126-1129, 2025.
doi:10.1109/lmwt.2025.3564946

17. Zhang, Yunchi, Kawthar A. Zaki, Jorge A. Ruiz-Cruz, and Ali E. Atia, "Analytical synthesis of generalized multi-band microwave filters," 2007 IEEE/MTT-S International Microwave Symposium, 1273-1276, Honolulu, HI, USA, 2007.
doi:10.1109/MWSYM.2007.380425

18. Cameron, Richard J., Chandra M. Kudsia, and Raafat R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, John Wiley & Sons, 2018.

19. Tamiazzo, S. and G. Macchiarella, "An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonators microwave filters using matrix rotations," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1693-1698, 2005.
doi:10.1109/tmtt.2005.847065

20. Zhao, Ping and Ke Wu, "Cascading fundamental building blocks with frequency-dependent couplings in microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1432-1440, 2019.
doi:10.1109/tmtt.2019.2895532

21. He, Yuxing, Giuseppe Macchiarella, Zhewang Ma, and Nobuyuki Yoshikawa, "Synthesis and design of quasi-canonical planar filters comprising cascaded frequency-variant blocks," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 671-681, 2021.
doi:10.1109/tmtt.2020.3039814

22. Zhao, Ping and Ke Wu, "Filters with linear frequency-dependent couplings: Matrix synthesis and applications," IEEE Microwave Magazine, Vol. 24, No. 9, 30-45, 2023.
doi:10.1109/mmm.2023.3284750

23. Xiong, Zhiang, Ping Zhao, Jiyuan Fan, Zengqiang Wu, and Hongwei Gong, "Mixed electric and magnetic coupling design based on coupling matrix extraction," ZTE Communications, Vol. 21, No. 4, 85, 2023.

24. Zhao, Ping, "Phase de-embedding of narrowband coupled-resonator networks by vector fitting," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 4, 1439-1446, 2023.
doi:10.1109/tmtt.2018.2854170

25. Zhao, Ping and Ke-Li Wu, "Model-based vector-fitting method for circuit model extraction of coupled-resonator diplexers," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 6, 1787-1797, 2016.
doi:10.1109/tmtt.2016.2558639