Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-10-10
Doublet-Based Tunable Bandstop Filters with Wide Frequency Tuning Range and Constant Bandwidth
By
Progress In Electromagnetics Research C, Vol. 160, 219-224, 2025
Abstract
This paper introduces a novel method for designing a wideband tunable bandstop filter (BSF) with constant absolute bandwidth (ABW). The design uses a doublet configuration, where two varactor-tuned resonators are symmetrically coupled to a main transmission line. To maintain constant ABW during frequency tuning, a coupling scheme is proposed where coupling strength decreases as the frequency increases, eliminating the need for additional circuits. Theoretical analysis and closed-form equations are provided for designing the BSF with a wide tuning range. A BSF prototype is designed and tested, demonstrating a 10-dB ABW of approximately 190 MHz across a continuous stopband tuning range from 3.3 to 5.1 GHz, with a fractional tuning range of 42.9%.
Citation
Qi Zheng, Pengyu Yu, Yuhua Cheng, and Pengde Wu, "Doublet-Based Tunable Bandstop Filters with Wide Frequency Tuning Range and Constant Bandwidth," Progress In Electromagnetics Research C, Vol. 160, 219-224, 2025.
doi:10.2528/PIERC25080507
References

1. Jun, Sungyun and Kai Chang, "Reconfigurable bandstop filter with tunable center frequency and bandwidth using piezoelectric transducer," Microwave and Optical Technology Letters, Vol. 55, No. 11, 2670-2672, 2013.
doi:10.1002/mop.27894

2. Wong, Sai Wai and Lei Zhu, "Implementation of compact UWB bandpass filter with a notch-band," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 10-12, 2008.
doi:10.1109/lmwc.2007.911972

3. Zhang, Tao, Jiajie Pan, Bei Liu, Hao Zhang, and Zhangming Zhu, "Miniaturized wideband pole-zero following tunable bandstop filter for 5G millimeter-wave application," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 71, No. 8, 3725-3729, 2024.
doi:10.1109/tcsii.2024.3368001

4. Doumanis, Efstratios, George Goussetis, Jaakko Vuorio, Kari Hautio, Oskari Amper, Eduard Kuusmik, and Jorma Pallonen, "Tunable filters for agile 5G new radio base transceiver stations [Application Notes]," IEEE Microwave Magazine, Vol. 22, No. 11, 26-37, 2021.
doi:10.1109/mmm.2021.3102200

5. Al-Yasir, Yasir I. A., Naser Ojaroudi Parchin, Yuxiang Tu, Ahmed M. Abdulkhaleq, Issa T. E. Elfergani, Jonathan Rodriguez, and Raed A. Abd-Alhameed, "A varactor-based very compact tunable filter with wide tuning range for 4G and Sub-6 GHz 5G communications," Sensors, Vol. 20, No. 16, 4538, 2020.
doi:10.3390/s20164538

6. Abunjaileh, Alaa I. and Ian C. Hunter, "Tunable bandpass and bandstop filters based on dual-band combline structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 12, 3710-3719, 2010.
doi:10.1109/tmtt.2010.2083950

7. Lakshmi, C. R., D. Kavitha, D. Kannadassan, and T. G. Shivapanchakshari, "Tunable microwave bandstop filter for sub-6 GHz 5G applications," International Conference on Intelligent Computing and Advances in Communication, 583-595, 2024.
doi:10.1007/978-981-96-4071-3_49

8. Archer, J. L., W. L. Bongianni, and J. H. Collins, "Magnetically tunable microwave bandstop filters using epitaxial YIG film resonators," Journal of Applied Physics, Vol. 41, No. 3, 1359-1360, 1970.
doi:10.1063/1.1658942

9. Qiu, Gang, Chen S. Tsai, Bert S. T. Wang, and Yun Zhu, "A YIG/GGG/GaAs-based magnetically tunable wideband microwave band-pass filter using cascaded band-stop filters," IEEE Transactions on Magnetics, Vol. 44, No. 11, 3123-3126, 2008.
doi:10.1109/tmag.2008.2002780

10. Wei, Feng, Chi Yuan Zhang, Cao Zeng, and Xiao Wei Shi, "A reconfigurable balanced dual-band bandpass filter with constant absolute bandwidth and high selectivity," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4029-4040, 2021.
doi:10.1109/tmtt.2021.3093907

11. Zeng, Zhibin and Lei Bai, "Frequency-reconfigurable wideband bandstop filter using varactor-based dual-slotted defected ground structure," IEICE Electronics Express, Vol. 18, No. 10, 20210154, 2021.
doi:10.1587/elex.18.20210154

12. Shalaby, Mohammed, Mohammed Abdelmoneum, and Kazuhiro Saitou, "Design of spring coupling for high Q, high frequency MEMS filters," ASME International Mechanical Engineering Congress and Exposition, Vol. 47756, 129-137, 2006.
doi:10.1115/IMECE2006-15395

13. Choi, Joo-Young, Jinyu Ruan, Fabio Coccetti, and Stepan Lucyszyn, "Three-dimensional RF MEMS switch for power applications," IEEE Transactions on Industrial Electronics, Vol. 56, No. 4, 1031-1039, 2009.
doi:10.1109/tie.2008.2010087

14. Reines, Isak, Sang-June Park, and Gabriel M. Rebeiz, "Compact low-loss tunable X-band bandstop filter with miniature RF-MEMS switches," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 7, 1887-1895, 2010.
doi:10.1109/tmtt.2010.2050621

15. Vali, Sk Shoukath, G. Shanthi, Anish Yalavarthi, Sahithi Pingalakani, Dasari Chandrika, Chokkakula Ganesh, and K. Girija Sravani, "Design and simulation of tunable bandstop filters by integrating RF MEMS shunt switch for K-band applications," Microsystem Technologies, Vol. 31, No. 4, 977-986, 2025.
doi:10.1007/s00542-024-05720-0

16. Annam, Kaushik, Birhanu Alemayehu, Eunsung Shin, and Guru Subramanyam, "Tunable filters using defected ground structures at millimeter-wave frequencies," Micromachines, Vol. 16, No. 1, 60, 2024.
doi:10.3390/mi16010060

17. Guermal, Mohamed, Jamal Zbitou, Mostafa Hefnawi, and Fouad Aytouna, "A novel configuration of reconfigurable bandpass filter based on varactor diodes," E-Prime --- Advances in Electrical Engineering, Electronics and Energy, Vol. 11, 100889, 2025.
doi:10.1016/j.prime.2024.100889

18. Zhang, Xiu Yin, Chi Hou Chan, Quan Xue, and Bin-Jie Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 1257-1265, 2012.
doi:10.1109/tie.2011.2158038

19. Brown, Jacob A., Stuart Barth, Braden P. Smyth, and Ashwin K. Iyer, "Compact mechanically tunable microstrip bandstop filter with constant absolute bandwidth using an embedded metamaterial-based EBG," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 10, 4369-4380, 2020.
doi:10.1109/tmtt.2020.3016310

20. Zysman, G. I. and A. K. Johnson, "Coupled transmission line networks in an inhomogeneous dielectric medium," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, No. 10, 753-759, 1969.
doi:10.1109/tmtt.1969.1127055

21. Huang, Frederick, "Dual-band superconducting spiral filters including narrow bandstop notches," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1188-1195, 2009.
doi:10.1109/tmtt.2009.2017812

22. Pozar, David M., Microwave Engineering: Theory and Techniques, John Wiley & Sons, 2021.

23. Hickle, Mark D. and Dimitrios Peroulis, "Tunable constant-bandwidth substrate-integrated bandstop filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 157-169, 2018.
doi:10.1109/tmtt.2017.2740170

24. Zhou, Wen-Jun and Jian-Xin Chen, "High-selectivity tunable balanced bandpass filter with constant absolute bandwidth," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 64, No. 8, 917-921, 2017.
doi:10.1109/tcsii.2016.2621120

25. Cho, Young-Ho and Gabriel M. Rebeiz, "Two-and four-pole tunable 0.7-1.1-GHz bandpass-to-bandstop filters with bandwidth control," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 3, 457-463, 2014.
doi:10.1109/tmtt.2014.2304360

26. El-Tanani, Mohammed A. and Gabriel M. Rebeiz, "A two-pole two-zero tunable filter with improved linearity," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 4, 830-839, 2009.
doi:10.1109/tmtt.2009.2015124