Vol. 160
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-29
Design of Multi-Resonator Coupled Duplexer Based on Electromagnetic Coupling Path Separation
By
Progress In Electromagnetics Research C, Vol. 160, 154-160, 2025
Abstract
In RF front-end circuits, the miniaturization and high-performance integration of duplexer remain critical challenges for 5G communication and IoT devices. A microstrip duplexer design scheme is proposed based on electric and magnetic coupling path separation and dual-mode characteristics. Through the collaborative design of second-order uniform impedance resonators and dual-mode T-shaped resonators, the design achieves signal separation for dual frequency bands at 2.4 GHz and 3.6 GHz. The design forms the electric coupling path via edge-gap coupling of rectangular split-ring resonators, and realizes magnetic coupling path through vias. By independently regulating electric and magnetic coupling strengths, eight transmission zeros are introduced on both sides of the dual passbands, significantly enhancing out-of-band suppression and port isolation. The simulation results show that the passband insertion loss is less than or equal to 1.9 dB. Due to machining tolerances, the measured center frequencies shift to 2.04 and 3.48 GHz, while the out-of-band rejection remains better than 39 dB, validating the engineering adaptability of the design. This scheme achieves high-performance integration of RF front-ends in a compact architecture through the coordinated regulation of multiple transmission zeros and coupling path separation technology, providing a solution for wireless communication devices.
Citation
Mingxin Liu, Jialin Zhang, Yan Zhang, Qunjie Zhang, and Lin Fu, "Design of Multi-Resonator Coupled Duplexer Based on Electromagnetic Coupling Path Separation," Progress In Electromagnetics Research C, Vol. 160, 154-160, 2025.
doi:10.2528/PIERC25081402
References

1. Yu, Yang, Yi Wang, Talal Skaik, Thomas Starke, Xiaobang Shang, Michael J. Lancaster, Peter Hunyor, Peter G. Huggard, Hui Wang, Michael Harris, Mat Beardsley, and Qingsha S. Cheng, "D-band waveguide diplexer fabricated using micro laser sintering," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 12, No. 9, 1446-1457, Sep. 2022.
doi:10.1109/tcpmt.2022.3204887

2. Wang, Haolong, Hongyu Shi, Wei E. I. Sha, Zhihao Lan, Fei Gao, Xiaoming Chen, and Anxue Zhang, "Design of high-isolation topological duplexer utilizing dual-edge state topological waveguides," IEEE Transactions on Antennas and Propagation, Vol. 72, No. 11, 8802-8809, Nov. 2024.
doi:10.1109/tap.2024.3458399

3. Yao, Changfei, Wenjie Ma, and Hao Lin, "A W-band high intermediate-frequency subharmonic mixer utilizing a novel T-type duplexer," IEEE Microwave and Wireless Technology Letters, Vol. 35, No. 2, 233-236, Feb. 2025.
doi:10.1109/lmwt.2024.3506826

4. Seong, Minsang, Jungsun Kim, and Yungseon Eo, "SAW device with reactive reflector for integrated SAW RF duplexer area minimization," IEEE Transactions on Electron Devices, Vol. 71, No. 10, 6312-6319, Oct. 2024.
doi:10.1109/ted.2024.3440272

5. Zhou, Liguo, Jiang Jiang, Wen Zhang, Ping Kwan Johnny Wong, Bin Xia, Dongwei Zhang, Xudong Bai, and Xilong Lu, "Design of high order HTS duplexer based on SIR structure," IEEE Transactions on Applied Superconductivity, Vol. 33, No. 4, 1-8, Jun. 2023.
doi:10.1109/tasc.2023.3248960

6. Khani, Amir Ali Mohammad, Majid Fouladian, and Jalil Mazloum, "Multi layers THz duplexer based on combined graphene patterns," Solid State Communications, Vol. 360, 114974, Feb. 2023.
doi:10.1016/j.ssc.2022.114974

7. Hsiao, Meng-Jie and Cam Nguyen, "25–53 GHz ultra‐wideband high‐isolation passive balanced duplexer on 0.18‐μm BiCMOS for 5G applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 15, 1960-1968, Dec. 2020.
doi:10.1049/iet-map.2020.0439

8. Ahmad, Waqas and Djuradj Budimir, "Dual‐band filtenna array for WLAN applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 477-481, Feb. 2016.
doi:10.1002/mop.29597

9. Lin, Chin-Kai and Shyh-Jong Chung, "A filtering microstrip antenna array," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 11, 2856-2863, Nov. 2011.
doi:10.1109/tmtt.2011.2160986

10. Iqbal, Amjad, Jun Jiat Tiang, Ching Kwang Lee, and Byung Moo Lee, "Tunable substrate integrated waveguide diplexer with high isolation and wide stopband," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 7, 456-458, Jul. 2019.
doi:10.1109/lmwc.2019.2916609

11. Zhang, Sheng, Xue-Dong Fu, Ting Wang, Fa-Lin Liu, Hai-Ting Wang, and Hai Liu, "Quasi quarter SIW‐mode resonator and its application to sierpinski fractal filter design," Microwave and Optical Technology Letters, Vol. 58, No. 5, 1176-1179, May 2016.
doi:10.1002/mop.29764

12. Deslandes, D. and Ke Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, Feb. 2003.
doi:10.1109/tmtt.2002.807820

13. Chaturvedi, Divya, Arvind Kumar, and Ayman A. Althuwayb, "A dual-band dual-polarized SIW cavity-backed antenna-duplexer for off-body communication," Alexandria Engineering Journal, Vol. 64, 419-426, Feb. 2023.
doi:10.1016/j.aej.2022.09.021

14. Kumar, Arvind, Divya Chaturvedi, and Arani Ali Khan, "Bandwidth-improved HMSIW resonator based filtennas for single/dual channel network," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 502-505, Jaipur, Rajasthan, India, India, 2021.
doi:10.1109/InCAP52216.2021.9726509

15. Wang, Huan-Ying, Guo Hui Li, Yu-Dan Wu, Wei Yang, and Tong Mou, "A novel triple-band filter based on triple-mode substrate integrated waveguide," Progress In Electromagnetics Research Letters, Vol. 58, 59-65, 2016.
doi:10.2528/pierl15102601

16. Xiao, Jian-Kang, Min Zhu, Yong Li, Li Tian, and Jian-Guo Ma, "High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 781-783, Dec. 2015.
doi:10.1109/lmwc.2015.2495194

17. Song, Kaijun, Yedi Zhou, Yuxuan Chen, Abdiqani Mohamed Iman, Shema Richard Patience, and Yong Fan, "High-isolation diplexer with high frequency selectivity using substrate integrate waveguide dual-mode resonator," IEEE Access, Vol. 7, 116676-116683, 2019.
doi:10.1109/access.2019.2926121

18. Gao, Yang, Shuwen Wen, Jing Yuan, and Xiaqian Xu, "Design of interdigital-filter based diplexer with high isolation and wideband," High Power Laser and Particle Beams, Vol. 31, No. 8, 084101, 2019.
doi:10.11884/HPLPB201931.180308

19. Zhu, Chuanming and Jian Zhang, "Design of diplexer-integrated filtering power divider with high isolation," Microwave and Optical Technology Letters, Vol. 61, No. 11, 2607-2613, Nov. 2019.
doi:10.1002/mop.31937

20. Chuang, Ming-Lin and Ming-Tien Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 11, 583-585, Nov. 2011.
doi:10.1109/lmwc.2011.2168949

21. Chen, Dong, Lei Zhu, Huizheng Bu, and Chonghu Cheng, "A novel planar diplexer using slotline-loaded microstrip ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 11, 706-708, Nov. 2015.
doi:10.1109/lmwc.2015.2479836

22. Guan, Xuehui, Fangqi Yang, Haiwen Liu, and Lei Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 6, 385-387, Jun. 2014.
doi:10.1109/lmwc.2014.2313591