Vol. 161
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-11-02
Design of Notch UWB-MIMO Antennas Based on RMS-ZINC Structure Decoupling Method
By
Progress In Electromagnetics Research C, Vol. 161, 142-149, 2025
Abstract
Based on the current trends in wireless communication systems, a novel high-isolation dual-notch ultra-wideband (UWB) multiple-input multiple-output (MIMO) antenna is proposed, measuring 46 mm × 46 mm × 0.8 mm. The antenna is printed on an RO4350 substrate and consists of two identical antennas placed orthogonally. The antenna unit features a third-order stepped rectangular structure and employs microstrip feeding, incorporating inverted U-shaped and M-shaped grooves etched onto the antenna unit to achieve dual-notch functionality, thereby addressing electromagnetic interference issues in wireless local area networks (WLAN) operating at 5.15-5.85 GHz and 7.25-7.75 GHz. To address the issue of mutual coupling in MIMO antennas, this paper presents an innovative decoupling method known as the RMS-ZINC approach. This technique involves excavating a T-shaped groove on the rear of the dielectric substrate, symmetrically aligned with the diagonal, and filling it with a dielectric material primarily composed of zinc. This material substitution effectively manipulates the coupling current paths, achieving a high isolation level of -20 dB. The experimental results show that the operating bandwidth of the antenna ranges from 2.89 to 10.19 GHz, with a peak gain of approximately 5 dB (7.15 dBi) and a maximum radiation efficiency of up to 92%. The measured results are essentially consistent with the simulated ones, indicating the practical application value of the proposed MIMO antenna with notch functionality.
Citation
Shuming Liu, Jingchang Nan, Yifei Wang, Licong Fan, and Jianxin Qi, "Design of Notch UWB-MIMO Antennas Based on RMS-ZINC Structure Decoupling Method," Progress In Electromagnetics Research C, Vol. 161, 142-149, 2025.
doi:10.2528/PIERC25081403
References

1. Desai, Arpan, Merih Palandoken, Issa Elfergani, Ismail Akdag, Chemseddine Zebiri, Joaquim Bastos, Jonathan Rodriguez, and Raed A. Abd-Alhameed, "Transparent 2-element 5G MIMO antenna for sub-6 GHz applications," Electronics, Vol. 11, No. 2, 251, 2022.
doi:10.3390/electronics11020251

2. Benghanem, Yahia, Ali Mansoul, and Lila Mouffok, "A compact two-element MIMO antenna with high isolation and dual band-notched characteristics for UWB communication systems," Wireless Personal Communications, Vol. 136, No. 2, 1107-1126, 2024.
doi:10.1007/s11277-024-11319-5

3. Shekhawat, Sandesh Singh, Deepshikha Lodhi, and Sarthak Singhal, "Dual band notched superwideband MIMO antenna for 5G and 6G applications," AEU --- International Journal of Electronics and Communications, Vol. 184, 155419, Sep. 2024.
doi:10.1016/j.aeue.2024.155419

4. Nandi, Sourav and Akhilesh Mohan, "A compact dual-band MIMO slot antenna for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2457-2460, 2017.
doi:10.1109/lawp.2017.2723927

5. Tang, Tzu-Chun and Ken-Huang Lin, "An ultrawideband MIMO antenna with dual band-notched function," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1076-1079, 2014.
doi:10.1109/lawp.2014.2329496

6. Gollamudi, Naveen Kumar, Y. Venkata Narayana, and A. Mallikharjuna Prasad, "Compact and asymmetric fed modified hexagonal shaped multiple-input multiple-output (MIMO) antenna for 5G sub: 6 GHz (N77/N78 & N79) and WLAN applications," Analog Integrated Circuits and Signal Processing, Vol. 114, No. 1, 103-112, 2023.
doi:10.1007/s10470-022-02124-w

7. Tiwari, Rakesh N., Prabhakar Singh, Shivam Pandey, Ritika Anand, Dinesh Kumar Singh, and Binod Kumar Kanaujia, "Swastika shaped slot embedded two port dual frequency band MIMO antenna for wireless applications," Analog Integrated Circuits and Signal Processing, Vol. 109, No. 1, 103-113, 2021.
doi:10.1007/s10470-021-01923-x

8. Wu, Wenying, Ruixing Zhi, Yingjian Chen, Han Li, Yanhua Tan, and Gui Liu, "A compact multiband MIMO antenna for IEEE 802.11 a/b/g/n applications," Progress In Electromagnetics Research Letters, Vol. 84, 59-65, 2019.
doi:10.2528/pierl19031106

9. Aboelleil, Heba, Ahmed A. Ibrahim, and Ashraf A. M. Khalaf, "A compact multiple-input multiple-output antenna with high isolation for wireless applications," Analog Integrated Circuits and Signal Processing, Vol. 108, No. 1, 17-24, 2021.
doi:10.1007/s10470-020-01775-x

10. Yang, Yingying, Qingxin Chu, and Chunxu Mao, "Multiband MIMO antenna for GSM, DCS, and LTE indoor applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1573-1576, 2016.
doi:10.1109/lawp.2016.2517188

11. Gopal, Geetharamani and Aathmanesan Thangakalai, "Cross dipole antenna for 4G and sub-6 GHz 5G base station applications," Applied Computational Electromagnetics Society Journal (ACES), Vol. 35, No. 1, 16-22, 2020.

12. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, 2016.
doi:10.1109/tap.2016.2593932

13. Desai, Arpan, Trushit Upadhyaya, Merih Palandoken, and Cem Gocen, "Dual band transparent antenna for wireless MIMO system applications," Microwave and Optical Technology Letters, Vol. 61, No. 7, 1845-1856, 2019.
doi:10.1002/mop.31825

14. Liu, Peng, Deming Sun, Peng Wang, and Peng Gao, "Design of a dual-band MIMO antenna with high isolation for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 74, 23-30, 2018.
doi:10.2528/pierl18011004

15. Zhang, Shuai and Gert Frølund Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/lawp.2015.2435992

16. Toktas, Abdurrahim and Ali Akdagli, "Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 8, 822-829, 2015.
doi:10.1049/iet-map.2014.0086

17. Chouhan, Sanjay, Debendra Kumar Panda, Manish Gupta, and Sarthak Singhal, "Multiport MIMO antennas with mutual coupling reduction techniques for modern wireless transreceive operations: A review," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21189, 2018.
doi:10.1002/mmce.21189

18. Nadeem, Iram and Dong-You Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2018.
doi:10.1109/access.2018.2885558

19. Addepalli, Tathababu and V. R. Anitha, "A very compact and closely spaced circular shaped UWB MIMO antenna with improved isolation," AEU --- International Journal of Electronics and Communications, Vol. 114, 153016, 2020.
doi:10.1016/j.aeue.2019.153016