Vol. 160
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-09-22
Novel Designs of Quadrature 3-DB Impedance-Transforming Transdirectional Couplers Based on Double-Shielded Coupled Lines
By
Progress In Electromagnetics Research C, Vol. 160, 56-64, 2025
Abstract
Quadrature 3-dB impedance-transforming transdirectional (TRD) couplers based on double-shielded coupled lines are analyzed and synthesized; design relationships are also presented. To verify proposed concept two couplers implemented with high-permittivity (higher than 10) dielectrics are designed, fabricated, and measured. The first TRD coupler features a suspended ceramic bar, and the second one features a meandering layout of the upper line on a high-permittivity dielectric overlay. Comparison of the proposed solutions with known ones shows that novel coupler designs have advantages in small dimensions and an extended bandwidth of operating frequency (about 1.5-2 times). The simulated results are in good agreement with the measurement data.
Citation
Aleksandr N. Sychev, Sergey A. Artishchev, Natalia S. Trufanova, and Nickolay Y. Rudyi, "Novel Designs of Quadrature 3-DB Impedance-Transforming Transdirectional Couplers Based on Double-Shielded Coupled Lines," Progress In Electromagnetics Research C, Vol. 160, 56-64, 2025.
doi:10.2528/PIERC25082002
References

1. Shie, Ching-Ian, Jui-Ching Cheng, Sheng-Chun Chou, and Yi-Chyun Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 2981-2988, Dec. 2009.
doi:10.1109/tmtt.2009.2034219        Google Scholar

2. Turalchuk, Pavel, Irina Munina, Irina Vendik, Jia Ni, and Jiasheng Hong, "DC isolated directional coupler," 2014 44th European Microwave Conference, 93-95, Rome, Italy, 2014.
doi:10.1109/EuMC.2014.6986377

3. Sychev, Aleksandr N., Sergey M. Struchkov, Vladimir N. Putilov, and Nickolay Yu. Rudyi, "A novel trans-directional coupler based on vertically installed planar circuit," 2015 European Microwave Conference (EuMC), 283-286, Paris, France, 2015.
doi:10.1109/EuMC.2015.7345755

4. Liu, Hongmei, Xiaoting Li, Yongquan Guo, Shao-Jun Fang, and Zhongbao Wang, "Design of filtering coupled-line trans-directional coupler with broadband bandpass response," Progress In Electromagnetics Research M, Vol. 100, 163-173, 2021.
doi:10.2528/pierm20110405        Google Scholar

5. Zhang, Yifan, Yongle Wu, and Weimin Wang, "Miniaturized filtering trans-directional coupler with enhanced input-reflectionless feature using two types of coupled multi-line sections," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 12, e23427, 2022.
doi:10.1002/mmce.23427        Google Scholar

6. Liu, Hongmei, Shaojun Fang, Zhongbao Wang, and Shiqiang Fu, "Design of arbitrary-phase-difference transdirectional coupler and its application to a flexible Butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 10, 4175-4185, Oct. 2019.
doi:10.1109/tmtt.2019.2934440        Google Scholar

7. Jeannin, Lucie, Larbi Boukhezar, Olivier Occello, Loic Vincent, Guillaume Ducournau, Marc Le Roy, André Pérennec, and Philippe Ferrari, "A versatile balun based on a power divider topology," 2024 54th European Microwave Conference (EuMC), 3-6, Paris, France, 2024.
doi:10.23919/EuMC61614.2024.10732152

8. Cristal, E. G., "Coupled-transmission-line directional couplers with coupled lines of unequal characteristic impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 7, 337-346, Jul. 1966.
doi:10.1109/TMTT.1966.1126266        Google Scholar

9. Wincza, Krzysztof and Slawomir Gruszczynski, "Asymmetric coupled-line directional couplers as impedance transformers in balanced and N-way power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 7, 1803-1810, Jul. 2011.
doi:10.1109/tmtt.2011.2141677        Google Scholar

10. Wincza, Krzysztof, Slawomir Gruszczynski, and Stanislaw Kuta, "Approach to the design of asymmetric coupled-line directional couplers with the maximum achievable impedance-transformation ratio," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 5, 1218-1225, May 2012.
doi:10.1109/tmtt.2012.2187065        Google Scholar

11. Sychev, Aleksandr N., Vladislav A. Bondar, Kezhik B.-B. Dagba, Anton I. Stepanyuga, and Nickolay Y. Rudyi, "Theory of doubly-shielded coupled lines for directional couplers of various directivity types with impedance transformation," IEEE Transactions on Microwave Theory and Techniques, Vol. 71, No. 5, 2104-2117, May 2023.
doi:10.1109/tmtt.2022.3227310        Google Scholar

12. Matsumoto, A., Microwave Filters and Circuits, 349, Academic Press, New York, London, 1970.

13. Wincza, Krzysztof, Kamil Staszek, Robert Smolarz, and Slawomir Gruszczynski, "Impedance-transforming transdirectional coupled-line directional couplers with maximum achievable transformation ratio," IEEE Access, Vol. 12, 93841-93847, 2024.
doi:10.1109/access.2024.3424536        Google Scholar

14. Lin, Chien-San, Sheng-Fuh Chang, Chia-Chan Chang, and Yi-Hao Shu, "Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1862-1868, Sep. 2007.
doi:10.1109/tmtt.2007.903346        Google Scholar

15. Tripathi, V. K., "Asymmetric coupled transmission lines in an inhomogeneous medium," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 9, 734-739, Sep. 1975.
doi:10.1109/TMTT.1975.1128665        Google Scholar

16. Sychev, A. N., "Synthesis of modal and distributed parameters of asymmetric coupled lines with inhomogeneous dielectrics," Journal of Radio Electronics, No. 6, 2024.
doi:10.30898/1684-1719.2024.6.7        Google Scholar

17. Trufanova, Natalia S., Sergey A. Artishchev, Anton G. Loschilov, and Eldar R. Ragimov, "Manufacturing of hybrid integrated circuits using additive printer technology," 2022 International Siberian Conference on Control and Communications (SIBCON), 1-5, Tomsk, Russian Federation, 2022.
doi:10.1109/SIBCON56144.2022.10002958

18. Sychev, Aleksandr N. and Konstantin K. Zharov, "Analysis of asymmetric broad-side coupled lines by conformal mapping technique," 2019 International Siberian Conference on Control and Communications (SIBCON), 1-3, Tomsk, Russia, 2019.
doi:10.1109/SIBCON.2019.8729591

19. Oraizi, Homayoon and Mohammad Javad Siahkari, "Optimum design of multi-section asymmetrical transdirectional couplers with port impedance matching up to S band frequency," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 4046706, 2022.
doi:10.1155/2022/4046706        Google Scholar