Vol. 162
Latest Volume
All Volumes
PIERC 163 [2025] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-09
A Harmonic Suppression Algorithm for PMSMs Featuring Collaborative Dead-Time and DC Bias Compensation
By
Progress In Electromagnetics Research C, Vol. 162, 264-273, 2025
Abstract
To enhance the stability of the spindle drive system in computer numerical control (CNC) machine tools and ensure machining accuracy by reducing non-ideal torque fluctuations caused by current harmonics during high-precision processes, a multi-factor harmonic current suppression algorithm based on an extended state observer (ESO) is proposed. Firstly, a mathematical model of the permanent magnet synchronous motor (PMSM) is established, and the current measurement offset errors (CMOEs) and their effects on the current waveform are analyzed in depth. Subsequently, the zero-point lag phenomenon of the voltage source inverter (VSI) and its resulting harmonic characteristics are discussed in detail. Furthermore, the compensation principles for CMOE and VSI dead-time nonlinear distortion are elucidated, and a corresponding ESO structure is designed through theoretical derivation. The proposed method constructs a unified perturbation model and designs adaptive ESO to achieve cooperative compensation. A comparative analysis of the control strategy's performance before and after optimization validates the significant effectiveness of the proposed method in harmonic suppression. Experimental results show that the proposed strategy reduces the total harmonic distortion (THD) of the phase current to 3.28%, and key harmonics such as the 5th and 7th are suppressed to much lower levels. Torque ripple and speed fluctuation are significantly reduced, effectively improving the operational stability of the motor. The experimental results indicate that the proposed dual compensation scheme for dead-time and DC offset current can effectively reduce harmonic distortion and significantly enhance the operational performance of the PMSM.
Citation
Yang Yu, Zehua Gong, and Xin Wang, "A Harmonic Suppression Algorithm for PMSMs Featuring Collaborative Dead-Time and DC Bias Compensation," Progress In Electromagnetics Research C, Vol. 162, 264-273, 2025.
doi:10.2528/PIERC25082908
References

1. Lee, Kwang-Woon and Sang-Il Kim, "Dynamic performance improvement of a current offset error compensator in current vector-controlled SPMSM drives," IEEE Transactions on Industrial Electronics, Vol. 66, No. 9, 6727-6736, 2019.
doi:10.1109/tie.2018.2877162

2. Bai, Yin, Binxing Li, Qiwei Wang, Dawei Ding, Guoqiang Zhang, Gaolin Wang, and Dianguo Xu, "An adaptive-frequency harmonic suppression strategy based on vector reconstruction for current measurement error of PMSM drives," IEEE Transactions on Power Electronics, Vol. 38, No. 1, 34-40, 2023.
doi:10.1109/tpel.2022.3200708

3. Song, Pingyue, Tao Wang, Lijian Wu, Hao Li, Xiang Meng, and Cheng Li, "Analysis and compensation of current measurement errors in machine drive systems --- A review," Energies, Vol. 18, No. 6, 1367, 2025.
doi:10.3390/en18061367

4. Dan, Hanbing, Huaibin Pang, Yonglu Liu, Yao Sun, Mei Su, Marco Rivera, and Patrick Wheeler, "Current measurement errors compensation based on current ripple component decoupling for PMSM drives," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 13, No. 2, 1699-1709, 2025.
doi:10.1109/jestpe.2024.3468388

5. Hu, Mingjin, Wei Hua, Zheng Wu, Ningyi Dai, Huafeng Xiao, and Wei Wang, "Compensation of current measurement offset error for permanent magnet synchronous machines," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 11119-11128, 2020.
doi:10.1109/tpel.2020.2978230

6. Zhang, Nianzhong, Qiang Song, Mingsheng Wang, and Wei Zhang, "A dead-time compensation method for motor drive inverters based on nonlinear observer," Computers and Electrical Engineering, Vol. 120, 109668, 2024.
doi:10.1016/j.compeleceng.2024.109668

7. Mandl, Johannes, Philipp Trampitsch, Philipp Schachinger, Dennis Albert, Reinhard Klambauer, and Alexander Bergmann, "Development of a fiber optic current sensor for low DC measurements in the power grid," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-8, 2024.
doi:10.1109/tim.2024.3458044

8. Zhao, Jiabin, Weicheng Ou, Nian Cai, Zhouyixiao Wu, and Han Wang, "Measurement error analysis and compensation for optical encoders: A review," IEEE Transactions on Instrumentation and Measurement, Vol. 73, 1-30, 2024.
doi:10.1109/tim.2024.3417589

9. Song, Zhanfeng, Xiaohui Ma, and Yun Yu, "Design of zero-sequence current controller for open-end winding PMSMs considering current measurement errors," IEEE Transactions on Power Electronics, Vol. 35, No. 6, 6127-6139, 2020.
doi:10.1109/tpel.2019.2952402

10. Jung, H.-S., S.-H. Hwang, J.-M. Kim, C.-U. Kim, and C. Choi, "Diminution of current-measurement error for vector-controlled AC motor drives," IEEE Transactions on Industry Applications, Vol. 42, No. 5, 1249-1256, 2006.
doi:10.1109/tia.2006.880904

11. Lu, Jiadong, Yihua Hu, Guipeng Chen, Zheng Wang, and Jinglin Liu, "Mutual calibration of multiple current sensors with accuracy uncertainties in IPMSM drives for electric vehicles," IEEE Transactions on Industrial Electronics, Vol. 67, No. 1, 69-79, Jan. 2020.
doi:10.1109/tie.2019.2896320

12. Kim, Mi-Seong, Da-Hye Park, and Wook-Jin Lee, "Compensation of current measurement errors due to sensor scale error and non-simultaneous sampling error for three-phase inverter applications," Journal of Power Electronics, Vol. 22, No. 1, 31-39, 2022.
doi:10.1007/s43236-021-00333-6

13. Kim, Myoungho, Seung-Ki Sul, and Junggi Lee, "Compensation of current measurement error for current-controlled PMSM drives," IEEE Transactions on Industry Applications, Vol. 50, No. 5, 3365-3373, 2014.
doi:10.1109/tia.2014.2301873

14. Zhang, Qiaofen, Haohao Guo, Yancheng Liu, Chen Guo, Fengkui Zhang, Zhenrui Zhang, and Guanhua Li, "A novel error-injected solution for compensation of current measurement errors in PMSM drive," IEEE Transactions on Industrial Electronics, Vol. 70, No. 5, 4608-4619, 2023.
doi:10.1109/tie.2022.3186343

15. Lee, Sangmin, Heonyoung Kim, and Kibok Lee, "Current measurement offset error compensation in vector-controlled SPMSM drive systems," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 10, No. 2, 2619-2628, 2022.
doi:10.1109/jestpe.2022.3151351

16. Zhu, Lidong, Ben Xu, and Huangqiu Zhu, "Interior permanent magnet synchronous motor dead-time compensation combined with extended Kalman and neural network bandpass filter," Progress In Electromagnetics Research M, Vol. 98, 193-203, 2020.
doi:10.2528/pierm20100903

17. Qiu, Tengfei, Xuhui Wen, and Feng Zhao, "Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives," IEEE Transactions on Power Electronics, Vol. 31, No. 3, 2530-2538, Mar. 2016.
doi:10.1109/tpel.2015.2427914

18. Yan, Qingzeng, Rende Zhao, Xibo Yuan, Wenzhong Ma, and Jinkui He, "A DSOGI-FLL-based dead-time elimination PWM for three-phase power converters," IEEE Transactions on Power Electronics, Vol. 34, No. 3, 2805-2818, 2019.
doi:10.1109/tpel.2018.2839659

19. Han, K., X. Sun, B. Liu, W. Song, and X. Feng, "Dead-time on-line compensation scheme of SVPWM for permanent magnet synchronous motor drive system with vector control," Proceedings of the CSEE, Vol. 38, No. 2, 620-627, 2018.
doi:10.13334/j.0258-8013.pcsee.162043

20. Lang, Jiewen, Chengde Tong, Yuhong Zheng, Jingang Bai, and Ping Zheng, "Decoupled dead-time compensation method using revised-resonant control-based disturbance observer in PMSM drives," IEEE Transactions on Power Electronics, Vol. 40, No. 1, 340-350, Jan. 2025.
doi:10.1109/tpel.2024.3458406

21. Kim, Sam-Young, Wootaik Lee, Min-Sik Rho, and Seung-Yub Park, "Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 57, No. 5, 1609-1614, May 2010.
doi:10.1109/tie.2009.2033098

22. Wu, Zheng, Hengliang Zhang, Kai Liu, Wei Hua, Gan Zhang, Bo Wang, Shichuan Ding, and Jun Hang, "Dead-time compensation based on a modified multiple complex coefficient filter for permanent magnet synchronous machine drives," IEEE Transactions on Power Electronics, Vol. 36, No. 11, 12979-12989, Nov. 2021.
doi:10.1109/tpel.2021.3078167

23. Yu, Kailiang and Zheng Wang, "An online compensation method of VSI nonlinearity for dual three-phase PMSM drives using current injection," IEEE Transactions on Power Electronics, Vol. 37, No. 4, 3769-3774, Apr. 2022.
doi:10.1109/tpel.2021.3127990

24. Zuo, Yun, Huimin Wang, Xinglai Ge, Yangjing Liu, Shengdao Zhu, and Christopher H. T. Lee, "A simple current measurement scaling error compensation method for PMSM drives," IEEE Transactions on Power Electronics, Vol. 39, No. 11, 14122-14128, 2024.
doi:10.1109/tpel.2024.3421996

25. Song, Pingyue, Yuankui Wang, Enlin Ma, Lijian Wu, Tao Wang, and Hao Li, "Current measurement error compensation based on modified multiple complex-coefficient filters in PMSM drives," IEEE Transactions on Power Electronics, Vol. 40, No. 3, 4067-4079, Mar. 2025.
doi:10.1109/tpel.2024.3507110

26. Yu, Xu, Xuan Wu, Ting Wu, Dan Yang, Zhenghao Lei, and Shoudao Huang, "An FTSMO-based current measurement offset error compensation method in SPMSM drives," IEEE Transactions on Industrial Electronics, Vol. 72, No. 7, 6840-6851, Jul. 2025.
doi:10.1109/tie.2024.3519570

27. Yang, Jun, Wen-Hua Chen, Shihua Li, Lei Guo, and Yunda Yan, "Disturbance/uncertainty estimation and attenuation techniques in PMSM drives --- A survey," IEEE Transactions on Industrial Electronics, Vol. 64, No. 4, 3273-3285, Apr. 2017.
doi:10.1109/tie.2016.2583412

28. Guo, Haohao, Tianxiang Xiang, Yancheng Liu, Qiaofen Zhang, Yi Wei, and Fengkui Zhang, "Compensation method for current measurement errors in the synchronous reference frame of a small-sized surface vehicle propulsion motor," Journal of Marine Science and Engineering, Vol. 12, No. 1, 154, 2024.
doi:10.3390/jmse12010154

29. Zhang, Xuefeng, Qiwei Xu, Yiru Miao, Xuan Wu, Yiming Wang, and Liangwu Yi, "An improved generalized extended state observer for current harmonic compensation in dual three-phase PMSMs," IEEE Transactions on Power Electronics, Vol. 40, No. 5, 7136-7149, May 2025.
doi:10.1109/tpel.2025.3526624

30. Urasaki, N., T. Senjyu, K. Uezato, and T. Funabashi, "An adaptive dead-time compensation strategy for voltage source inverter fed motor drives," IEEE Transactions on Power Electronics, Vol. 20, No. 5, 1150-1160, 2005.
doi:10.1109/tpel.2005.854046