Vol. 162
Latest Volume
All Volumes
PIERC 163 [2025] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-08
Optimized Multi-Layers Inversion Scheme for Azimuthal Resistivity Logging-While-Drilling Based on Supervised Descent Method
By
Progress In Electromagnetics Research C, Vol. 162, 234-241, 2025
Abstract
Logging-While-Drilling (LWD) azimuthal resistivity measurements deliver critical support for geosteering in complex hydrocarbon reservoirs by acquiring real-time azimuthal responses of formation electrical properties around the borehole; the precision and efficiency of its inversion directly govern the reliability of horizontal well trajectory optimization strategies. Currently, the inversion study of azimuthal resistivity logging with drilling mainly focuses on the simplified three-layer stratigraphic model, and this simple layered model and limited stratigraphic parameter settings have been difficult to adapt to the needs of the increasingly complex geological exploitation. However, inversion of complex multilayer formations (≥5 strata) confronts three main challenges: high-dimensional parameterization, attenuated response sensitivity, and noise-impaired accuracy. These constraints compromise field-applicable accuracy thresholds for multilayer stratigraphic inversion. To address the above problems, in this paper, by combining the advantages of traditional inversion methods with machine learning concepts, a new optimized supervised descent inversion method is proposed for azimuthal resistivity LWD in a five-layer formation model. The data-adaptive reconstruction algorithm enhances outer formation response sensitivity. Subsequent integration of multi-matrix fusion with secondary inversion optimization further augments accuracy in field well-log inversion. Numerical simulations and downhole measurements verify the effectiveness of the proposed method, which is a field-deployable real-time inversion algorithm with higher accuracy and stronger noise immunity.
Citation
Yongsheng Xu, Yuehui Li, Junyuan Zheng, Xiangyang Sun, Peng Hao, and Jie Ren, "Optimized Multi-Layers Inversion Scheme for Azimuthal Resistivity Logging-While-Drilling Based on Supervised Descent Method," Progress In Electromagnetics Research C, Vol. 162, 234-241, 2025.
doi:10.2528/PIERC25083001
References

1. Lesso, W. G. and S. V. Kashikar, "The principles and procedures of geosteering," IADC/SPE Drilling Conference, SPE-35051, New Orleans, Louisiana, USA, 1996.
doi:10.2118/35051-MS

2. Alyaev, Sergey, Erich Suter, Reider Brumer Bratvold, Aojie Hong, Xiaodong Luo, and Kristian Fossum, "A decision support system for multi-target geosteering," Journal of Petroleum Science and Engineering, Vol. 183, 106381, 2019.
doi:10.1016/j.petrol.2019.106381

3. Lee, Hwa Ok, Fernando L. Teixeira, Luis E. San Martin, and Michael S. Bittar, "Numerical modeling of eccentered LWD borehole sensors in dipping and fully anisotropic earth formations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 727-735, Mar. 2012.
doi:10.1109/tgrs.2011.2162736

4. Wang, Gong Li, Tom Barber, Peter Wu, David Allen, and Aria Abubakar, "Fast inversion of triaxial induction data in dipping crossbedded formations," Geophysics, Vol. 82, No. 2, D31-D45, Mar. 2017.
doi:10.1190/geo2015-0610.1

5. Thiel, Michael and Dzevat Omeragic, "High-fidelity real-time imaging with electromagnetic logging-while-drilling measurements," IEEE Transactions on Computational Imaging, Vol. 3, No. 2, 369-378, Jun. 2017.
doi:10.1109/tci.2017.2670364

6. Xing, Guang-Long, Mei-Ling Zhang, Man-Fen Liu, and Shan-De Yang, "An inversion method on formation dielectric constant and resistivity by using high frequency electromagnetic wave logging," Chinese Journal of Geophysics, Vol. 45, No. 3, 450-460, May 2002.
doi:10.1002/cjg2.257

7. Thiel, Michael and Dzevat Omeragic, "2D lateral imaging inversion for directional electromagnetic logging-while-drilling measurements," Geophysics, Vol. 84, No. 6, D217-D230, Nov. 2019.
doi:10.1190/geo2018-0752.1

8. Marquardt, Donald W., "An algorithm for least-squares estimation of nonlinear parameters," Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, 431-441, 1963.
doi:10.1137/0111030

9. Hu, Yanyan, Jiefu Chen, Xuqing Wu, and Yueqin Huang, "A flexible and versatile joint inversion framework using deep learning," SEG/AAPG International Meeting for Applied Geoscience & Energy, Houston, Texas, USA, 2022.
doi:10.1190/image2022-3728722.1

10. Zhu, Gaoyang, Muzhi Gao, Fanmin Kong, and Kang Li, "A fast inversion of induction logging data in anisotropic formation based on deep learning," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 12, 2050-2054, Dec. 2020.
doi:10.1109/lgrs.2019.2961374

11. Noh, Kyubo, David Pardo, and Carlos Torres-Verdin, "Deep-learning inversion method for the interpretation of noisy logging-while-drilling resistivity measurements," arXiv preprint arXiv:2111.07490, 2021.
doi:10.48550/arXiv.2111.07490

12. Yang, Heng, Xuhui Jia, Ioannis Patras, and Kwok-Ping Chan, "Random subspace supervised descent method for regression problems in computer vision," IEEE Signal Processing Letters, Vol. 22, No. 10, 1816-1820, Oct. 2015.
doi:10.1109/lsp.2015.2437883

13. Xiong, Xuehan and Fernando De la Torre, "Supervised descent method and its applications to face alignment," 2013 IEEE Conference on Computer Vision and Pattern Recognition, 532-539, Portland, OR, USA, Jun. 2013.
doi:10.1109/CVPR.2013.75

14. Hu, Yanyan, Rui Guo, Yuchen Jin, Xuqing Wu, Maokun Li, Aria Abubakar, and Jiefu Chen, "A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 11, 8013-8025, 2020.
doi:10.1109/tgrs.2020.2986000

15. Guo, Rui, Maokun Li, Guangyou Fang, Fan Yang, Shenheng Xu, and Aria Abubakar, "Application of supervised descent method to transient electromagnetic data inversion," Geophysics, Vol. 84, No. 4, E225-E237, Jul. 2019.
doi:10.1190/geo2018-0129.1

16. Levenberg, Kenneth, "A method for the solution of certain non-linear problems in least squares," Quarterly of Applied Mathematics, Vol. 2, No. 2, 164-168, 1944.
doi:10.1090/qam/10666

17. Liu, Zijian, Zaiping Nie, Xiangyang Sun, Dingbang Wen, and Jun Tan, "A low frequency forward looking antenna array for LWD and MWD," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS), 151-154, St. Petersburg, Russia, May 2017.
doi:10.1109/PIERS.2017.8261724

18. Sun, Xiang, Zai-Ping Nie, Aiyong Li, and Xi Luo, "Analysis and correction of borehole effect on the responses of multicomponent induction logging tools," Progress In Electromagnetics Research, Vol. 85, 211-226, 2008.
doi:10.2528/pier08072206

19. Noh, Kyubo, David Pardo, and Carlos Torres-Verdín, "2.5-D deep learning inversion of LWD and deep-sensing EM measurements across formations with dipping faults," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 1-5, 2022.
doi:10.1109/lgrs.2021.3128965

20. Jin, Yuchen, Qiuyang Shen, Xuqing Wu, Jiefu Chen, and Yueqin Huang, "A physics-driven deep-learning network for solving nonlinear inverse problems," Petrophysics, Vol. 61, No. 01, 86-98, Feb. 2020.
doi:10.30632/pjv61n1-2020a3

21. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, Winston, Washington, DC, USA, 1977.

22. Hao, Peng, Xiangyang Sun, Zaiping Nie, Xizhou Yue, and Yongpeng Zhao, "A robust inversion of induction logging responses in anisotropic formation based on supervised descent method," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 1-5, 2021.
doi:10.1109/lgrs.2021.3078756

23. Li, Jundong, Jiliang Tang, and Huan Liu, "Reconstruction-based unsupervised feature selection: An embedded approach," Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2159-2165, Melbourne, Australia, Aug. 2017.