1. Lesso, W. G. and S. V. Kashikar, "The principles and procedures of geosteering," IADC/SPE Drilling Conference, SPE-35051, New Orleans, Louisiana, USA, 1996.
doi:10.2118/35051-MS
2. Alyaev, Sergey, Erich Suter, Reider Brumer Bratvold, Aojie Hong, Xiaodong Luo, and Kristian Fossum, "A decision support system for multi-target geosteering," Journal of Petroleum Science and Engineering, Vol. 183, 106381, 2019.
doi:10.1016/j.petrol.2019.106381
3. Lee, Hwa Ok, Fernando L. Teixeira, Luis E. San Martin, and Michael S. Bittar, "Numerical modeling of eccentered LWD borehole sensors in dipping and fully anisotropic earth formations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 727-735, Mar. 2012.
doi:10.1109/tgrs.2011.2162736
4. Wang, Gong Li, Tom Barber, Peter Wu, David Allen, and Aria Abubakar, "Fast inversion of triaxial induction data in dipping crossbedded formations," Geophysics, Vol. 82, No. 2, D31-D45, Mar. 2017.
doi:10.1190/geo2015-0610.1
5. Thiel, Michael and Dzevat Omeragic, "High-fidelity real-time imaging with electromagnetic logging-while-drilling measurements," IEEE Transactions on Computational Imaging, Vol. 3, No. 2, 369-378, Jun. 2017.
doi:10.1109/tci.2017.2670364
6. Xing, Guang-Long, Mei-Ling Zhang, Man-Fen Liu, and Shan-De Yang, "An inversion method on formation dielectric constant and resistivity by using high frequency electromagnetic wave logging," Chinese Journal of Geophysics, Vol. 45, No. 3, 450-460, May 2002.
doi:10.1002/cjg2.257
7. Thiel, Michael and Dzevat Omeragic, "2D lateral imaging inversion for directional electromagnetic logging-while-drilling measurements," Geophysics, Vol. 84, No. 6, D217-D230, Nov. 2019.
doi:10.1190/geo2018-0752.1
8. Marquardt, Donald W., "An algorithm for least-squares estimation of nonlinear parameters," Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, 431-441, 1963.
doi:10.1137/0111030
9. Hu, Yanyan, Jiefu Chen, Xuqing Wu, and Yueqin Huang, "A flexible and versatile joint inversion framework using deep learning," SEG/AAPG International Meeting for Applied Geoscience & Energy, Houston, Texas, USA, 2022.
doi:10.1190/image2022-3728722.1
10. Zhu, Gaoyang, Muzhi Gao, Fanmin Kong, and Kang Li, "A fast inversion of induction logging data in anisotropic formation based on deep learning," IEEE Geoscience and Remote Sensing Letters, Vol. 17, No. 12, 2050-2054, Dec. 2020.
doi:10.1109/lgrs.2019.2961374
11. Noh, Kyubo, David Pardo, and Carlos Torres-Verdin, "Deep-learning inversion method for the interpretation of noisy logging-while-drilling resistivity measurements," arXiv preprint arXiv:2111.07490, 2021.
doi:10.48550/arXiv.2111.07490
12. Yang, Heng, Xuhui Jia, Ioannis Patras, and Kwok-Ping Chan, "Random subspace supervised descent method for regression problems in computer vision," IEEE Signal Processing Letters, Vol. 22, No. 10, 1816-1820, Oct. 2015.
doi:10.1109/lsp.2015.2437883
13. Xiong, Xuehan and Fernando De la Torre, "Supervised descent method and its applications to face alignment," 2013 IEEE Conference on Computer Vision and Pattern Recognition, 532-539, Portland, OR, USA, Jun. 2013.
doi:10.1109/CVPR.2013.75
14. Hu, Yanyan, Rui Guo, Yuchen Jin, Xuqing Wu, Maokun Li, Aria Abubakar, and Jiefu Chen, "A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 58, No. 11, 8013-8025, 2020.
doi:10.1109/tgrs.2020.2986000
15. Guo, Rui, Maokun Li, Guangyou Fang, Fan Yang, Shenheng Xu, and Aria Abubakar, "Application of supervised descent method to transient electromagnetic data inversion," Geophysics, Vol. 84, No. 4, E225-E237, Jul. 2019.
doi:10.1190/geo2018-0129.1
16. Levenberg, Kenneth, "A method for the solution of certain non-linear problems in least squares," Quarterly of Applied Mathematics, Vol. 2, No. 2, 164-168, 1944.
doi:10.1090/qam/10666
17. Liu, Zijian, Zaiping Nie, Xiangyang Sun, Dingbang Wen, and Jun Tan, "A low frequency forward looking antenna array for LWD and MWD," 2017 Progress In Electromagnetics Research Symposium --- Spring (PIERS), 151-154, St. Petersburg, Russia, May 2017.
doi:10.1109/PIERS.2017.8261724
18. Sun, Xiang, Zai-Ping Nie, Aiyong Li, and Xi Luo, "Analysis and correction of borehole effect on the responses of multicomponent induction logging tools," Progress In Electromagnetics Research, Vol. 85, 211-226, 2008.
doi:10.2528/pier08072206
19. Noh, Kyubo, David Pardo, and Carlos Torres-Verdín, "2.5-D deep learning inversion of LWD and deep-sensing EM measurements across formations with dipping faults," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 1-5, 2022.
doi:10.1109/lgrs.2021.3128965
20. Jin, Yuchen, Qiuyang Shen, Xuqing Wu, Jiefu Chen, and Yueqin Huang, "A physics-driven deep-learning network for solving nonlinear inverse problems," Petrophysics, Vol. 61, No. 01, 86-98, Feb. 2020.
doi:10.30632/pjv61n1-2020a3
21. Tikhonov, A. N. and V. Y. Arsenin, Solutions of Ill-posed Problems, Winston, Washington, DC, USA, 1977.
22. Hao, Peng, Xiangyang Sun, Zaiping Nie, Xizhou Yue, and Yongpeng Zhao, "A robust inversion of induction logging responses in anisotropic formation based on supervised descent method," IEEE Geoscience and Remote Sensing Letters, Vol. 19, 1-5, 2021.
doi:10.1109/lgrs.2021.3078756
23. Li, Jundong, Jiliang Tang, and Huan Liu, "Reconstruction-based unsupervised feature selection: An embedded approach," Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2159-2165, Melbourne, Australia, Aug. 2017.