Vol. 162
Latest Volume
All Volumes
PIERC 163 [2025] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-09
Power Utilization Analysis for Centralized and Distributed Antenna Systems
By
Progress In Electromagnetics Research C, Vol. 162, 252-263, 2025
Abstract
Mobile network data rates are increasing with each generation, due to the usage of emerging technologies and advanced architectures. They may consume substantially more power than the present fourth-generation (4G) and fifth-generation (5G) systems. Base stations have been determined as the primary source of energy usage in a mobile network. They are responsible for more than 60% of the energy consumption of mobile networks. Moreover, the recent 5G base stations (BSs), which provide higher bandwidth and data rates and have more transceivers with centralized antennas, raise alarms about their power consumption. With eco-friendly concerns about the amount of carbon dioxide (CO2) reduction, the intergovernmental panel on climate change (IPCC) sees climate change as a threat to human well-being and planetary health, and ever-increasing energy costs have already created an urgent need for more energy-efficient and low-power consumption BSs in mobile communications. As a result, the energy consumption and carbon emissions of 5G mobile networks are concerning. Information and communication technologies (ICT) have great potential for reducing CO2 emissions. Therefore, power consumption is one of the central topics for telecom network providers, especially when they are challenged by higher costs. Distributed antenna systems (DAS) could decrease network power usage through smaller cell size or moving closer to users. In this study, we look at the impact of cell size on power consumption in centralized and distributed antenna systems. The distributed antenna system consumes more than 35% less power than the usual centralized structure; thus, swapping a centralized antenna with a distributed antenna may lower total power consumption.
Citation
Kamya Yekeh Yazdandoost, "Power Utilization Analysis for Centralized and Distributed Antenna Systems," Progress In Electromagnetics Research C, Vol. 162, 252-263, 2025.
doi:10.2528/PIERC25090405
References

1. "ICT solutions for 21st century challenges," Available: https://www.gesi.org/research/smarter2030-ict-solutions-for-21st-century-challenges.

2. "Green 5G: Building a Sustainable World," Available: https://www.huawei.com/en/public-policy/green-5g-building-a-sustainable-world.

3. Bolla, Raffaele, Roberto Bruschi, Franco Davoli, and Flavio Cucchietti, "Energy efficiency in the future internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures," IEEE Communications Surveys & Tutorials, Vol. 13, No. 2, 223-244, Second Quarter 2011.
doi:10.1109/surv.2011.071410.00073

4. Cao, Xianghui, Lu Liu, Yu Cheng, and Xuemin Shen, "Towards energy-efficient wireless networking in the big data era: A survey," IEEE Communications Surveys & Tutorials, Vol. 20, No. 1, 303-332, Firstquarter 2018.
doi:10.1109/comst.2017.2771534

5. Wang, Xiaofei, Athanasios V. Vasilakos, Min Chen, Yunhao Liu, and Ted Taekyoung Kwon, "A survey of green mobile networks: Opportunities and challenges," Mobile Networks and Applications, Vol. 17, No. 1, 4-20, 2012.
doi:10.1007/s11036-011-0316-4

6. Al-Karawi, Yassir, Hamed Al-Raweshidy, and Rajagopal Nilavalan, "Power consumption evaluation of next generation open radio access network," 2024 IEEE International Conference on Consumer Electronics (ICCE), 1-6, Las Vegas, NV, USA, Jan. 2024.
doi:10.1109/ICCE59016.2024.10444418

7. Vereecken, Willem, Ward Van Heddeghem, Margot Deruyck, Bart Puype, Bart Lannoo, Wout Joseph, Didier Colle, Luc Martens, and Piet Demeester, "Power consumption in telecommunication networks: Overview and reduction strategies," IEEE Communications Magazine, Vol. 49, No. 6, 62-69, Jun. 2011.
doi:10.1109/mcom.2011.5783986

8. López-Pérez, David, Antonio De Domenico, Nicola Piovesan, Geng Xinli, Harvey Bao, Song Qitao, and Mérouane Debbah, "A survey on 5G radio access network energy efficiency: Massive MIMO, lean carrier design, sleep modes, and machine learning," IEEE Communications Surveys & Tutorials, Vol. 24, No. 1, 653-697, Firstquarter 2022.
doi:10.1109/comst.2022.3142532

9. Hasan, Ziaul, Hamidreza Boostanimehr, and Vijay K. Bhargava, "Green cellular networks: A survey, some research issues and challenges," IEEE Communications Surveys & Tutorials, Vol. 13, No. 4, 524-540, Fourth Quarter 2011.
doi:10.1109/surv.2011.092311.00031

10. Ammar, Hussein A., Raviraj Adve, Shahram Shahbazpanahi, Gary Boudreau, and Kothapalli Venkata Srinivas, "User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions," IEEE Communications Surveys & Tutorials, Vol. 24, No. 1, 611-652, Firstquarter 2022.
doi:10.1109/comst.2021.3135119

11. Marzetta, Thomas L., "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Transactions on Wireless Communications, Vol. 9, No. 11, 3590-3600, Nov. 2010.
doi:10.1109/twc.2010.092810.091092

12. Okuyama, Tatsuki, Satoshi Suyama, Jun Mashino, and Yukihiko Okumura, "Antenna deployment for 5G ultra high-density distributed antenna system at low SHF bands," 2016 IEEE Conference on Standards for Communications and Networking (CSCN), 1-6, Berlin, Germany, Oct. 2016.
doi:10.1109/cscn.2016.7784885

13. Yu, Lisu, Jingxian Wu, Andong Zhou, Erik G. Larsson, and Pingzhi Fan, "Massively distributed antenna systems with nonideal optical fiber fronthauls: A promising technology for 6G wireless communication systems," IEEE Vehicular Technology Magazine, Vol. 15, No. 4, 43-51, Dec. 2020.
doi:10.1109/mvt.2020.3018100

14. Varzakas, P., "Average channel capacity for Rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, Dec. 2006.
doi:10.1002/dac.784

15. Özdogan, Özgecan, Emil Björnson, and Jiayi Zhang, "Performance of cell-free massive MIMO with Rician fading and phase shifts," IEEE Transactions on Wireless Communications, Vol. 18, No. 11, 5299-5315, Nov. 2019.
doi:10.1109/twc.2019.2935434

16. Wang, Zhe, Jiayi Zhang, Emil Björnson, and Bo Ai, "Uplink performance of cell-free massive MIMO over spatially correlated Rician fading channels," IEEE Communications Letters, Vol. 25, No. 4, 1348-1352, Apr. 2021.
doi:10.1109/lcomm.2020.3041899

17. Jin, Si-Nian, Dian-Wu Yue, and Ha H. Nguyen, "Spectral and energy efficiency in cell-free massive MIMO systems over correlated Rician fading," IEEE Systems Journal, Vol. 15, No. 2, 2822-2833, Jun. 2021.
doi:10.1109/jsyst.2020.2993048

18. Choi, Thomas, Issei Kanno, Masaaki Ito, Wei-Yu Chen, and Andreas F. Molisch, "A realistic path loss model for cell-free massive MIMO in urban environments," GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 2468-2473, Rio de Janeiro, Brazil, Dec. 2022.
doi:10.1109/GLOBECOM48099.2022.10001398

19. Tse, David and Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press, 2005.
doi:10.1017/cbo9780511807213

20. Ngo, Hien Quoc, Alexei Ashikhmin, Hong Yang, Erik G. Larsson, and Thomas L. Marzetta, "Cell-free massive MIMO versus small cells," IEEE Transactions on Wireless Communications, Vol. 16, No. 3, 1834-1850, Mar. 2017.
doi:10.1109/twc.2017.2655515

21. Wu, Jinsong, "Green wireless communications: From concept to reality [industry perspectives]," IEEE Wireless Communications, Vol. 19, No. 4, 4-5, Aug. 2012.
doi:10.1109/mwc.2012.6272415

22. Hu, Sha, Fredrik Rusek, and Ove Edfors, "Beyond massive MIMO: The potential of data transmission with large intelligent surfaces," IEEE Transactions on Signal Processing, Vol. 66, No. 10, 2746-2758, May 2018.
doi:10.1109/tsp.2018.2816577

23. Moerman, Arno, Joris Van Kerrebrouck, Olivier Caytan, Igor Lima de Paula, Laurens Bogaert, Guy Torfs, Piet Demeester, Hendrik Rogier, and Sam Lemey, "Beyond 5G without obstacles: mmWave-over-fiber distributed antenna systems," IEEE Communications Magazine, Vol. 60, No. 1, 27-33, Jan. 2022.
doi:10.1109/mcom.001.2100550

24. Akbar, Noman, Emil Bjoernson, Erik G. Larsson, and Nan Yang, "Downlink power control in massive MIMO networks with distributed antenna arrays," 2018 IEEE International Conference on Communications (ICC), 1-6, Kansas City, MO, USA, May 2018.
doi:10.1109/icc.2018.8422458

25. Nissel, Ronald, "Correctly modeling TX and RX chain in (distributed) massive MIMO --- New fundamental insights on coherency," IEEE Communications Letters, Vol. 26, No. 10, 2465-2469, Oct. 2022.
doi:10.1109/lcomm.2022.3189968

26. Saleh, A. A. M., A. Rustako, and R. Roman, "Distributed antennas for indoor radio communications," IEEE Transactions on Communications, Vol. 35, No. 12, 1245-1251, Dec. 1987.
doi:10.1109/tcom.1987.1096716

27. Chen, Zhaoyu, Yanheng Liu, Geng Sun, Xu Zhou, Boyu Li, Shuang Liang, and Qianyu Zhou, "Planning optimization of the distributed antenna system in high-speed railway communication network based on improved cuckoo search," International Journal of Antennas and Propagation, Vol. 2018, No. 1, 3641286, May 2018.
doi:10.1155/2018/3641286

28. Choi, Wan, J. G. Andrews, and Chaehag Yi, "Capacity of multicellular distributed antenna networks," 2005 International Conference on Wireless Networks, Communications and Mobile Computing, Vol. 2, 1337-1342, Maui, HI, Jun. 2005.
doi:10.1109/WIRLES.2005.1549606

29. Choi, Wan and Jeffrey G. Andrews, "Downlink performance and capacity of distributed antenna systems in a multicell environment," IEEE Transactions on Wireless Communications, Vol. 6, No. 1, 69-73, Jan. 2007.
doi:10.1109/twc.2007.05207

30. Li, Lee, Guanjie Li, Feng Zhou, and May Wu, "Downlink performance evaluation of centralized and distributed antenna systems in multicell multiuser spatial multiplexing environment," 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, 1-4, Dalian, China, Oct. 2008.
doi:10.1109/WiCom.2008.7

31. Xu, Qinyi, Jun Zhang, Chao He, Shi Jin, Kai-Kit Wong, and Hongguang Guan, "Performance analysis of a new topology of distributed antenna systems," 2012 International Conference on Wireless Communications and Signal Processing (WCSP), 1-6, Huangshan, China, Oct. 2012.
doi:10.1109/WCSP.2012.6542975

32. Clark, M. V., T. M. Willis, L. J. Greenstein, A. J. Rustako, V. Erceg, and R. S. Roman, "Distributed versus centralized antenna arrays in broadband wireless networks," IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202), Vol. 1, 33-37, Rhodes, Greece, May 2001.
doi:10.1109/vetecs.2001.944798

33. Zhang, Yan, Honglin Hu, and Jijun Luo, Distributed Antenna Systems: Open Architecture for Future Wireless Communications, CRC Press, 2007.

34. Hanly, S. V. and D. N. Tse, "Power control and capacity of spread spectrum wireless networks," Automatica, Vol. 35, No. 12, 1987-2012, Dec. 1999.
doi:10.1016/s0005-1098(99)00133-8

35. Heath, Robert, Steven Peters, Yi Wang, and Jiayin Zhang, "A current perspective on distributed antenna systems for the downlink of cellular systems," IEEE Communications Magazine, Vol. 51, No. 4, 161-167, Apr. 2013.
doi:10.1109/mcom.2013.6495775

36. Cui, Haixia and Yi Liu, "Green distributed antenna systems for smart communities: A comprehensive survey," China Communications, Vol. 16, No. 11, 70-80, Nov. 2019.
doi:10.23919/jcc.2019.11.006

37. Dai, Lin, Shidong Zhou, and Yan Yao, "Capacity analysis in CDMA distributed antenna systems," IEEE Transactions on Wireless Communications, Vol. 4, No. 6, 2613-2620, Nov. 2005.
doi:10.1109/twc.2005.858011

38. Zhu, Yi-Hang, Gilles Callebaut, Hatice Çalık, Liesbet Van der Perre, and François Rottenberg, "Energy efficient access point placement for distributed massive MIMO," Network, Vol. 2, No. 2, 288-310, May 2022.
doi:10.3390/network2020019

39. Yu, Xiong, Geng Li, and Wenbing Lu, "Power consumption based on 5G communication," 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC), Vol. 5, 910-914, Xi'an, China, Oct. 2021.
doi:10.1109/ITNEC52019.2021.9587128

40. Arnold, Oliver, Fred Richter, Gerhard Fettweis, and Oliver Blume, "Power consumption modeling of different base station types in heterogeneous cellular networks," 2010 Future Network & Mobile Summit, 1-8, Florence, Italy, Jun. 2010.

41. Cavdar, I. H. and O. Akcay, "The optimization of cell sizes and base stations power level in cell planning," IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202), Vol. 4, 2344-2348, Rhodes, Greece, May 2001.
doi:10.1109/VETECS.2001.944019

42. Thomas, Varghese Antony, Salman Ghafoor, Mohammed El-Hajjar, and Lajos Hanzo, "Baseband radio over fiber aided millimeter-wave distributed antenna for optical/wireless integration," IEEE Communications Letters, Vol. 17, No. 5, 1012-1015, May 2013.
doi:10.1109/lcomm.2013.030413.122841

43. Ishimura, Shota, Abdelmoula Bekkali, Kazuki Tanaka, Kosuke Nishimura, and Masatoshi Suzuki, "1.032-Tb/s CPRI-equivalent rate IF-over-fiber transmission using a parallel IM/PM transmitter for high-capacity mobile fronthaul links," Journal of Lightwave Technology, Vol. 36, No. 8, 1478-1484, Apr. 2018.
doi:10.1109/jlt.2017.2787151

44. Novak, Dalma, Rodney B. Waterhouse, Ampalavanapillai Nirmalathas, Christina Lim, Prasanna A. Gamage, Thomas R. Clark, Michael L. Dennis, and Jeffrey A. Nanzer, "Radio-over-fiber technologies for emerging wireless systems," IEEE Journal of Quantum Electronics, Vol. 52, No. 1, 1-11, Jan. 2016.
doi:10.1109/jqe.2015.2504107

45. Al-Raweshidy, Hamed and Shozo Komaki, Radio Over Fiber Technologies for Mobile Communications Networks, Artech House, 2002.

46. Lim, C., A. Nirmalathas, M. Bakaul, P. Gamage, K. L. Lee, Y. Yang, D. Novak, and R. Waterhouse, "Fiber-wireless networks and subsystem technologies," Journal of Lightwave Technology, Vol. 28, No. 4, 390-405, Feb. 2010.
doi:10.1109/jlt.2009.2031423

47. Sung, Minkyu, Seung-Hyun Cho, Joonyoung Kim, Joon Ki Lee, Jong Hyun Lee, and Hwan Seok Chung, "Demonstration of IFoF-based mobile fronthaul in 5G prototype with 28-GHz millimeter wave," Journal of Lightwave Technology, Vol. 36, No. 2, 601-609, Jan. 2018.
doi:10.1109/jlt.2017.2763156

48. Kim, Byung Gon, Sung Hyun Bae, Hoon Kim, and Yun C. Chung, "RoF-based mobile fronthaul networks implemented by using DML and EML for 5G wireless communication systems," Journal of Lightwave Technology, Vol. 36, No. 14, 2874-2881, Jul. 2018.
doi:10.1109/jlt.2018.2808294

49. Argyris, Nikos, Giannis Giannoulis, Konstantina Kanta, Nikolaos Iliadis, Christos Vagionas, Sotirios Papaioannou, George Kalfas, Dimitrios Apostolopoulos, Christophe Caillaud, Hélène Debrégeas, Nikos Pleros, and Hercules Avramopoulos, "A 5G mmWave fiber-wireless IFoF analog mobile fronthaul link with up to 24-Gb/s multiband wireless capacity," Journal of Lightwave Technology, Vol. 37, No. 12, 2883-2891, Jun. 2019.
doi:10.1109/jlt.2019.2897109

50. Lim, Christina, Yizhuo Yang, and Ampalavanapillai Nirmalathas, "Transport schemes for fiber-wireless technology: Transmission performance and energy efficiency," Photonics, Vol. 1, No. 2, 67-82, Apr. 2014.
doi:10.3390/photonics1020067

51. Feng, Wei, Xibin Xu, Shidong Zhou, Jing Wang, and Minghua Xia, "Sum rate characterization of distributed antenna systems with circular antenna layout," VTC Spring 2009 --- IEEE 69th Vehicular Technology Conference, 1-5, Barcelona, Spain, 2009.
doi:10.1109/VETECS.2009.5073866

52. Firouzabadi, Sina and Andrea Goldsmith, "Optimal placement of distributed antennas in cellular systems," 2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications, 461-465, San Francisco, CA, USA, Jun. 2011.
doi:10.1109/spawc.2011.5990452

53. 3GPP TR 21.915 "Technical specification group services and system aspects (Release 15)," Sep. 2019.

54. Fujimoto, Kyōhei, Mobile Antenna Systems Handbook, Artech House, 2001.

55. Bechta, Kamil, Marcin Rybakowski, Frank Hsieh, and Dmitry Chizhik, "Modeling of radio link budget with beamforming antennas for evaluation of 5G systems," 2018 IEEE 5G World Forum (5GWF), 427-432, Silicon Valley, CA, USA, Nov. 2018.
doi:10.1109/5gwf.2018.8516969

56. Wang, Cheng-Xiang, Ji Bian, Jian Sun, Wensheng Zhang, and Minggao Zhang, "A survey of 5G channel measurements and models," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3142-3168, 2018.
doi:10.1109/comst.2018.2862141

57. Richter, Fred, Albrecht J. Fehske, and Gerhard P. Fettweis, "Energy efficiency aspects of base station deployment strategies for cellular networks," 2009 IEEE 70th Vehicular Technology Conference Fall, 1-5, Anchorage, AK, USA, Sep. 2009.
doi:10.1109/VETECF.2009.5379031

58. 3GPP TS 36.101 "LTE; Evolved universal terrestrial radio access (E-UTRA); User equipment (UE) radio transmission and reception (Release 10)," Jun. 2011.

59. 3GPP TS 36.104 "LTE; Evolved universal terrestrial radio access (E-UTRA); Base station (BS) radio transmission and reception (Release 14)," Apr. 2017.

60. Lim, Youngmi, Joo Hyung Lee, and Jun Kyun Choi, "The effects of cell size on total power consumption, handover, user density of a base station, and outage probability," ICNS 2011 : The Seventh International Conference on Networking and Services, 157-160, Virginia, USA, May 2011.

61. Basere, Abdlmagid and Ivica Kostanic, "Cell coverage area estimation from receive signal level (RSL) measurements," Proceedings of the World Congress on Engineering and Computer Science, Vol. 1, 1-7, San Francisco, USA, Oct. 2016.

62. Zhang, Tiankui, Congqing Zhang, Laurie Cuthbert, and Yue Chen, "Energy efficient antenna deployment design scheme in distributed antenna systems," 2010 IEEE 72nd Vehicular Technology Conference --- Fall, 1-5, Ottawa, ON, Canada, Sep. 2010.
doi:10.1109/VETECF.2010.5594360

63. Yazdandoost, Kamya Yekeh, Ryo Inohara, and Takehiro Tsuritani, "Power consumption assessment of co-located and distributed antenna architectures," 2024 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), 1-5, Singapore, Aug. 2024.
doi:10.1109/APWCS61586.2024.10679321

64. Auer, Gunther, Oliver Blume, Vito Giannini, Istvan Godor, M. Imran, Ylva Jading, Efstathios Katranaras, Magnus Olsson, Dario Sabella, Per Skillermark, and W. Wajda, "EARTH Deliverable D2. 3: Energy efficiency analysis of the reference systems, areas of improvements and target breakdown," Project Deliverable D, Vol. 2, 2013.

65. Richter, F. and G. Fettweis, "Cellular mobile network densification utilizing micro base stations," 2010 IEEE International Conference on Communications, 1-6, Cape Town, South Africa, May 2010.
doi:10.1109/ICC.2010.5502299

66. Jung, Byoung Hoon, Hansung Leem, and Dan Keun Sung, "Modeling of power consumption for macro-, micro-, and RRH-based base station architectures," 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), 1-5, Seoul, Korea (South), May 2014.
doi:10.1109/VTCSpring.2014.7022990

67. Farah, Joumana, Antoine Kilzi, Charbel Abdel Nour, and Catherine Douillard, "Power minimization in distributed antenna systems using non-orthogonal multiple access and mutual successive interference cancellation," IEEE Transactions on Vehicular Technology, Vol. 67, No. 12, 11873-11885, Dec. 2018.
doi:10.1109/tvt.2018.2876592

68. Ge, Xiaohu, Jing Yang, Hamid Gharavi, and Yang Sun, "Energy efficiency challenges of 5G small cell networks," IEEE Communications Magazine, Vol. 55, No. 5, 184-191, May 2017.
doi:10.1109/mcom.2017.1600788