Vol. 162
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-12-05
Curved Parasitic Element-Based Quad-Element Antenna for High-Gain Millimeter Wave 5G Communications
By
Progress In Electromagnetics Research C, Vol. 162, 206-213, 2025
Abstract
This paper proposes a novel four-port MIMO antenna specifically designed for millimeter-wave (mm-wave) 5G applications. The antenna features a compact symmetric layout measuring 22 mm × 22 mm, corresponding to approximately 2.7λ × 2.7λ at 37 GHz. The prototype is fabricated on a Rogers RT Duroid 5880 substrate (εr = 2.2, tanδ = 0.0009, h = 0.8 mm) to ensure low loss and stable performance at high frequencies. The antenna operates effectively over two targeted frequency bands, 37-41 GHz and 42-43.5 GHz, making it suitable for high-data-rate, short-range communication systems in emerging 5G networks. The structure is evolved through multiple design stages using strategically placed curved parasitic elements to achieve dual-band operation, high isolation, and enhanced gain. Experimental validation using a vector network analyzer and anechoic chamber confirms good agreement between simulated and measured S-parameters, with isolation better than -20 dB. The antenna demonstrates a measured gain between 9.3 and 9.7 dBi, with simulated peaks up to 11 dBi. Far-field pattern measurements exhibit stable bidirectional radiation with low cross-polarization and well-defined main lobes at both 38 GHz and 42 GHz. MIMO performance metrics such as ECC < 0.01, DG ≈ 10 dB, MEG ≈ -3 dB, and CCL < 0.4 bps/Hz confirm efficient multi-port operation. The proposed antenna thus offers a compact, high-isolation, high-gain solution for next-generation mm-wave 5G MIMO systems.
Citation
Manish Kumar Dabhade, and Krishna Keshavrao Warhade, "Curved Parasitic Element-Based Quad-Element Antenna for High-Gain Millimeter Wave 5G Communications," Progress In Electromagnetics Research C, Vol. 162, 206-213, 2025.
doi:10.2528/PIERC25091803
References

1. Ali, Wael, Sudipta Das, Hicham Medkour, and Soufian Lakrit, "Planar dual-band 27/39 GHz millimeter-wave MIMO antenna for 5G applications," Microsystem Technologies, Vol. 27, No. 1, 283-292, 2021.
doi:10.1007/s00542-020-04951-1        Google Scholar

2. Khalid, Mahnoor, Syeda Iffat Naqvi, Niamat Hussain, MuhibUr Rahman, Fawad, Seyed Sajad Mirjavadi, Muhammad Jamil Khan, and Yasar Amin, "4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071        Google Scholar

3. Aggarwal, Reena, Ajay Roy, and Rajeev Kumar, "Millimeter wave antennas: A state-of-the-art survey of recent developments, principles, and applications," Progress In Electromagnetics Research B, Vol. 104, 147-169, 2024.
doi:10.2528/pierb23102401        Google Scholar

4. Patel, Amit, Arpan Desai, Issa Elfergani, Alpesh Vala, Hiren Mewada, Keyur Mahant, Sagar Patel, Chemseddine Zebiri, Jonathan Rodriguez, and Esraa Ali, "UWB CPW fed 4-port connected ground MIMO antenna for sub-millimeter-wave 5G applications," Alexandria Engineering Journal, Vol. 61, No. 9, 6645-6658, 2022.
doi:10.1016/j.aej.2021.12.015        Google Scholar

5. Rahman, Saifur, Xin-Cheng Ren, Ahsan Altaf, Muhammad Irfan, Mujeeb Abdullah, Fazal Muhammad, Muhammad Rizwan Anjum, Salim Nasar Faraj Mursal, and Fahad Salem AlKahtani, "Nature inspired MIMO antenna system for future mmWave technologies," Micromachines, Vol. 11, No. 12, 1083, 2020.
doi:10.3390/mi11121083        Google Scholar

6. Megahed, Amany A., Ehab H. Abdelhay, Mohamed Abdelazim, and Heba Y. M. Soliman, "5G millimeter wave wideband MIMO antenna arrays with high isolation," EURASIP Journal on Wireless Communications and Networking, Vol. 2023, No. 1, 61, 2023.
doi:10.1186/s13638-023-02267-y        Google Scholar

7. Singh, S. Vikram, Janendra Pratap, Akanksha Singh, Smita Sharma, and Shubhi Gupta, "Isolation enhancement of MIMO antenna for millimeter wave applications," 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM), 466-470, London, United Kingdom, 2021.
doi:10.1109/iciem51511.2021.9445333

8. Shariff, Parveez, Pallavi R. Mane, Pradeep Kumar, Tanweer Ali, and M. Gulam Nabi Alsath, "Planar MIMO antenna for mmWave applications: Evolution, present status & future scope," Heliyon, Vol. 9, No. 2, e13362, 2023.
doi:10.1016/j.heliyon.2023.e13362        Google Scholar

9. Jayanthi, K. and A. M. Kalpana, "Design of six element MIMO antenna with enhanced gain for 28/38 GHz mm-Wave 5G wireless application," Computer Systems Science and Engineering, Vol. 46, No. 2, 1689-1705, 2023.
doi:10.32604/csse.2023.034613        Google Scholar

10. Sabek, Ayman R., Wael A. E. Ali, and Ahmed A. Ibrahim, "Minimally coupled two-element MIMO antenna with dual band (28/38 GHz) for 5G wireless communications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 43, No. 3, 335-348, 2022.
doi:10.1007/s10762-022-00857-3        Google Scholar

11. Patel, Amit, Alpesh Vala, Arpan Desai, Issa Elfergani, Hiren Mewada, Keyur Mahant, Chemseddine Zebiri, Dharmendra Chauhan, and Jonathan Rodriguez, "Inverted-L shaped wideband MIMO antenna for millimeter-wave 5G applications," Electronics, Vol. 11, No. 9, 1387, 2022.
doi:10.3390/electronics11091387        Google Scholar

12. Iqbal, Amjad, Abdul Basir, Amor Smida, Nazih Khaddaj Mallat, Issa Elfergani, Jonathan Rodriguez, and Sunghwan Kim, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.
doi:10.1109/access.2019.2933913        Google Scholar

13. Munir, Mehr E., Saad Hassan Kiani, Huseyin Serif Savci, Mohamed Marey, Jehanzeb Khan, Hala Mostafa, and Naser Ojaroudi Parchin, "A four element mm-Wave MIMO antenna system with wide-band and high isolation characteristics for 5G applications," Micromachines, Vol. 14, No. 4, 776, 2023.
doi:10.3390/mi14040776        Google Scholar

14. Esmail, Bashar A. F. and Slawomir Koziel, "Design and optimization of metamaterial-based highly-isolated MIMO antenna with high gain and beam tilting ability for 5G millimeter wave applications," Scientific Reports, Vol. 14, No. 1, 3203, 2024.
doi:10.1038/s41598-024-53723-8        Google Scholar

15. Elalaouy, Ouafae, Mohammed El Ghzaoui, and Jaouad Foshi, "Mutual coupling reduction of a two-port MIMO antenna using defected ground structure," e-Prime --- Advances in Electrical Engineering, Electronics and Energy, Vol. 8, 100557, 2024.
doi:10.1016/j.prime.2024.100557        Google Scholar

16. Abbas, Mohamed Atef, Abdelmegid Allam, Abdelhamid Gaafar, Hadia M. Elhennawy, and Mohamed Fathy Abo Sree, "Compact UWB MIMO antenna for 5G millimeter-wave applications," Sensors, Vol. 23, No. 5, 2702, 2023.
doi:10.3390/s23052702        Google Scholar

17. Alfakhri, Abdullah, "Dual polarization and mutual coupling improvement of UWB MIMO antenna with cross shape decoupling structure," e-Prime --- Advances in Electrical Engineering, Electronics and Energy, Vol. 4, 100130, 2023.
doi:10.1016/j.prime.2023.100130        Google Scholar

18. Murthy, Nimmagadda, "Improved isolation metamaterial inspired mm-Wave MIMO dielectric resonator antenna for 5G application," Progress In Electromagnetics Research C, Vol. 100, 247-261, 2020.
doi:10.2528/pierc19112603        Google Scholar

19. Kumar, Ashok, Ashok Kumar, Ping Jack Soh, and Arjun Kumar, "Design consideration, challenges and measurement aspects of 5G mm-Wave antennas: A review," Progress In Electromagnetics Research B, Vol. 96, 39-66, 2022.
doi:10.2528/pierb22052002        Google Scholar

20. Tariq, Saba, Syeda I. Naqvi, Niamat Hussain, and Yasar Amin, "A metasurface-based MIMO antenna for 5G millimeter-wave applications," IEEE Access, Vol. 9, 51805-51817, 2021.
doi:10.1109/access.2021.3069185        Google Scholar

21. Hussain, Niamat and Nam Kim, "Integrated microwave and mm-Wave MIMO antenna module with 360° pattern diversity for 5G internet of things," IEEE Internet of Things Journal, Vol. 9, No. 24, 24777-24789, 2022.
doi:10.1109/jiot.2022.3194676        Google Scholar

22. Abo-Elhassan, May Abd, Asmaa Elsayed Farahat, and Khalid Fawzy Ahmed Hussein, "Millimetric-wave quad-band MIMO antennas for future generations of mobile communications," Progress In Electromagnetics Research B, Vol. 95, 41-60, 2022.
doi:10.2528/pierb22010101        Google Scholar

23. Ali, Wael A. E., Ahmed A. Ibrahim, and Ashraf E. Ahmed, "Dual-band millimeter wave 2 × 2 MIMO slot antenna with low mutual coupling for 5G networks," Wireless Personal Communications, Vol. 129, No. 4, 2959-2976, 2023.
doi:10.1007/s11277-023-10267-w        Google Scholar

24. Sokunbi, Oludayo, Hussein Attia, Abubakar Hamza, Atif Shamim, Yiyang Yu, and Ahmed A. Kishk, "New self-isolated wideband MIMO antenna system for 5G mm-Wave applications using slot characteristics," IEEE Open Journal of Antennas and Propagation, Vol. 4, 81-90, 2023.
doi:10.1109/ojap.2023.3234341        Google Scholar

25. Alnemr, Fadwa, Mai Foua’ad Ahmed, and Abdulhamed Abdulmonem Shaalan, "A compact 28/38 GHz MIMO circularly polarized antenna for 5G applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 42, No. 3, 338-355, 2021.
doi:10.1007/s10762-021-00770-1        Google Scholar

26. El Halaoui, Mustapha, Laurent Canale, Adel Asselman, and Georges Zissis, "Dual-band 28/38 GHz inverted-F array antenna for fifth generation mobile applications," Proceedings, Vol. 63, No. 1, 53, 2020.
doi:10.3390/proceedings2020063053        Google Scholar

27. Tadesse, A. D., O. P. Acharya, and S. Sahu, "A compact planar four-port MIMO antenna for 28/38 GHz millimeter-wave 5G applications," Advanced Electromagnetics, Vol. 11, No. 3, 16-25, 2022.
doi:10.7716/aem.v11i3.1947        Google Scholar

28. Elsharkawy, Rania R., Khalid F. A. Hussein, and Asmaa E. Farahat, "Dual-band (28/38 GHz) compact MIMO antenna system for millimeter-wave applications," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 44, No. 11, 1016-1037, 2023.
doi:10.1007/s10762-023-00943-0        Google Scholar

29. Hasan, Md. Nazmul, Shahid Bashir, and Son Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019.
doi:10.1080/09205071.2019.1617790        Google Scholar

30. Tiwari, Rakesh N., K. Geetha Malya, Girigari Nandini, P. Baby Nikhitha, Deepti Sharma, Prabhakar Singh, and Pradeep Kumar, "Quad-band 1 × 4 linear MIMO antenna for millimeter-wave, wearable and biomedical telemetry applications," Sensors, Vol. 24, No. 14, 4427, 2024.
doi:10.3390/s24144427        Google Scholar

31. Sharma, Manish, Bhaskara Rao Perli, Lovish Matta, Tathababu Addepalli, Kanhaiya Sharma, and Fadi N. Sibai, "Flexible four-port MIMO antenna for 5G NR-FR2 tri-band mmWave application with SAR analysis," Scientific Reports, Vol. 14, No. 1, 29100, 2024.
doi:10.1038/s41598-024-79859-1        Google Scholar

32. Munir, Mehr E., Moustafa M. Nasralla, and Maged Abdullah Esmail, "Four port tri-circular ring MIMO antenna with wide-band characteristics for future 5G and mmWave applications," Heliyon, Vol. 10, No. 8, e28714, 2024.
doi:10.1016/j.heliyon.2024.e28714        Google Scholar