Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-11
An Experimental Validation of Amplitude Only Genetic Algorithm Techniques for Side Lobe Level Optimization and Beam Shaping in 6G Massive MIMO Systems
By
Progress In Electromagnetics Research C, Vol. 166, 76-88, 2026
Abstract
Traditional side-lobe suppression techniques such as Chebyshev and Taylor tapering provide limited adaptability to hardware constraints and fixed array geometries. Existing Genetic Algorithm applications predominantly focus on planar arrays with variable spacing, leaving linear arrays with fixed element spacing underexplored. This work presents a genetic algorithm-based amplitude tapering framework for optimizing side-lobe levels in 8­element linear phased arrays with fixed 0.48λ spacing. The approach incorporates hardware quantization constraints and validates performance through experimental implementation. Experimental validation uses the Analog Devices CN0566 Phaser kit operating at 10.25 GHz (centre frequency) with 0.5 dB gain resolution and 2.8125˚ phase quantization. Genetic algorithm parameters including population size, mutation rate, and fitness function were held constant while the convergence rate and side-lobe suppression are evaluated. This research work demonstrates practical genetic algorithm implementation for linear phased array optimization under real-world hardware constraints, providing design guidelines for X-­band radar and communication systems.
Citation
Neev B. Patel, Rizwan Habibbhai Alad, Kosha Shah, Yashvi Mojidra, and Purvang D. Dalal, "An Experimental Validation of Amplitude Only Genetic Algorithm Techniques for Side Lobe Level Optimization and Beam Shaping in 6G Massive MIMO Systems," Progress In Electromagnetics Research C, Vol. 166, 76-88, 2026.
doi:10.2528/PIERC25111803
References

1. Liu, Tianqu, Jinping Sun, Guohua Wang, Xiaoyong Du, and Weidong Hu, "Designing low side-lobe level-phase coded waveforms for MIMO radar using P-norm optimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 59, No. 4, 3797-3810, Aug. 2023.
doi:10.1109/taes.2022.3232310        Google Scholar

2. Zhu, Yangkun, Wenyu Ma, Chuang Wang, and Wenquan Cao, "Low sidelobe planar electrically large sparse array antenna with element number reduction based on genetic algorithm," IET Microwaves, Antennas & Propagation, Vol. 18, No. 6, 447-458, 2024.
doi:10.1049/mia2.12475        Google Scholar

3. Dib, Nihad, "Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search," Neural Computing and Applications, Vol. 30, No. 12, 3859-3868, 2018.
doi:10.1007/s00521-017-2971-2        Google Scholar

4. Adriansyah, Muhammad Athallah, Aditya Inzani Wahdiyat, Ismi Rosyiana Fitri, Noor Asniza Murad, and Catur Apriono, "Sidelobe level suppression in linear and planar phased arrays using grey wolf optimization with local search refinements," IEEE Access, Vol. 13, 27818-27832, 2025.
doi:10.1109/access.2025.3540456        Google Scholar

5. Asaad, Huda and Saad S. Hreshee, "SLL reduction in linear antenna arrays by genetic algorithm, flower pollination algorithm, and grey wolf optimization with iteration and population parameters," Revue d'Intelligence Artificielle, Vol. 37, No. 5, 1177-1186, 2023.
doi:10.18280/ria.370509        Google Scholar

6. Zhang, Zhigang, Ting Li, Feng Yuan, and Li Yin, "Synthesis of linear antenna array using genetic algorithm to control side lobe level," Computer Engineering and Networking. Lecture Notes in Electrical Engineering, Vol. 277, 39-46, Springer, Cham, 2013.
doi:10.1007/978-3-319-01766-2_5

7. Namdeo, Shravan Kumar, Mukesh Patidar, Shreyaskumar Patel, Ankit Jain, Devendra S. Mandloi, Pranav Paranjpe, and Sneha Nagar, "Genetic algorithm (GA) approach for side lobe level-reduction (SLL-R) and enhanced directivity in wireless communication," Journal of Microsystems and IoT, Vol. 2, No. 8, 1131-1139, 2024.
doi:10.5281/zenodo.13729305        Google Scholar

8. Chen, Qian, Songlin Yan, Xinyue Guo, Wei Wang, Zhixiang Huang, Lixia Yang, Yingsong Li, and Xianling Liang, "A low sidelobe 77 GHz centre‐fed microstrip patch array antenna," IET Microwaves, Antennas & Propagation, Vol. 17, No. 11, 887-896, 2023.
doi:10.1049/mia2.12408        Google Scholar

9. Li, Hongtao, Longyao Ran, Cheng He, Zhoupeng Ding, and Shengyao Chen, "Adaptive beamforming with sidelobe level control for multiband sparse linear array," Remote Sensing, Vol. 15, No. 20, 4929, 2023.
doi:10.3390/rs15204929        Google Scholar

10. Haupt, Randy L. and Douglas H. Werner, Genetic Algorithms in Electromagnetics, John Wiley & Sons, 2007.
doi:10.1002/047010628x

11. Nipo, Akila, Rubayed All Islam, and Md. Imdadul Islam, "Adaptive beamforming of linear array antenna system using particle swarm optimization and genetic algorithm," International Journal of Wireless and Microwave Technologies (IJWMT), Vol. 15, No. 5, 1-20, 2025.
doi:10.5815/ijwmt.2025.05.01        Google Scholar

12. Konstantinou, Rozita, Ihsan Kanbaz, Okan Yurduseven, and Michail Matthaiou, "Differential evolution-based end-fire realized gain optimization of active and parasitic arrays," IEEE Access, Vol. 13, 9857-9867, 2025.
doi:10.1109/access.2025.3526501        Google Scholar

13. Mandal, Ankush, Hamim Zafar, Swagatam Das, and Athanassios V. Vasilakos, "A modified differential evolution algorithm for shaped beam linear array antenna design," Progress In Electromagnetics Research, Vol. 125, 439-457, 2012.
doi:10.2528/pier11112408        Google Scholar

14. Geranmayeh, Parmida and Eckhard Grass, "Optimization of beamforming and transmit power using DQN and comparison with traditional techniques," IEEE Access, Vol. 13, 94275-94285, 2025.
doi:10.1109/access.2025.3573096        Google Scholar

15. Arunachalam, Valliammai, Luke Rosen, Mojisola Rachel Akinsiku, Shuvashis Dey, Rahul Gomes, and Dipankar Mitra, "A multi-stage deep learning framework for antenna array synthesis in satellite IoT networks," AI, Vol. 6, No. 10, 248, 2025.
doi:10.3390/ai6100248        Google Scholar

16. Halim, Zahid, Muhammad Nadeem Yousaf, Muhammad Waqas, Muhammad Sulaiman, Ghulam Abbas, Masroor Hussain, Iftekhar Ahmad, and Muhammad Hanif, "An effective genetic algorithm-based feature selection method for intrusion detection systems," Computers & Security, Vol. 110, 102448, 2021.
doi:10.1016/j.cose.2021.102448        Google Scholar

17. Karasev, Alexey S. and Maksim A. Stepanov, "Genetic algorithm for antenna array thinning with minimization of side lobe level," 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE), 268-272, Novosibirsk, Russian Federation, 2021.
doi:10.1109/APEIE52976.2021.9647478

18. Qiu, Huaqing, Yong Liu, Xiansong Meng, Xiaowei Guan, Yunhong Ding, and Hao Hu, "Bidirectional high sidelobe suppression silicon optical phased array," Photonics Research, Vol. 11, No. 4, 659-668, 2023.
doi:10.1364/prj.479880        Google Scholar

19. Wang, Zhe, Jiayi Zhang, Hongyang Du, Dusit Niyato, Shuguang Cui, Bo Ai, Mérouane Debbah, Khaled B. Letaief, and H. Vincent Poor, "A tutorial on extremely large-scale MIMO for 6G: Fundamentals, signal processing, and applications," IEEE Communications Surveys & Tutorials, Vol. 26, No. 3, 1560-1605, 2024.
doi:10.1109/comst.2023.3349276        Google Scholar

20. Qamar, Faizan, Syed Hussain Ali Kazmi, Khairul Akram Zainol Ariffin, Muhammad Tayyab, and Quang Ngoc Nguyen, "Multi-antenna array-based massive MIMO for B5G/6G: State of the art, challenges, and future research directions," Information, Vol. 15, No. 8, 442, 2024.
doi:10.3390/info15080442        Google Scholar

21. Deng, Ruoqi, Yutong Zhang, Haobo Zhang, Boya Di, Hongliang Zhang, H. Vincent Poor, and Lingyang Song, "Reconfigurable holographic surfaces for ultra-massive MIMO in 6G: Practical design, optimization and implementation," IEEE Journal on Selected Areas in Communications, Vol. 41, No. 8, 2367-2379, 2023.
doi:10.1109/jsac.2023.3288248        Google Scholar

22. Alwakeel, Ahmed M., "6G virtualized beamforming: A novel framework for optimizing massive MIMO in 6G networks," EURASIP Journal on Wireless Communications and Networking, Vol. 2025, No. 1, 23, 2025.
doi:10.1186/s13638-025-02451-2        Google Scholar

23. Awasthi, Parul, "Adaptive beamforming and massive MIMO optimization for ultra-reliable low-latency communication (URLLC) in 6G networks," International Journal of Applied Mathematics, Vol. 38, No. 6s, 159-189, 2025.
doi:10.12732/ijam.v38i6s.391        Google Scholar

24. Thiruppathi, Pandiselvi, Lakshmi Dhevi Balasubrahmaniam, Karthik Govindan Manoharan, and Aarthi Alias Ananthakirupa Balasubramanian, "Multiband plasmonic MIMO antenna array for 6G communications," Optical and Quantum Electronics, Vol. 56, No. 6, 969, 2024.
doi:10.1007/s11082-024-06835-4        Google Scholar

25. He, Xinyu, Tao Dong, Jingwen He, and Yue Xu, "A design approach of optical phased array with low side lobe level and wide angle steering range," Photonics, Vol. 8, No. 3, 63, 2021.
doi:10.3390/photonics8030063

26. Kolomvakis, Nikolaos and Emil Björnson, "Nonlinear distortion issues created by active reconfigurable intelligent surfaces," 2024 18th European Conference on Antennas and Propagation (EuCAP), 1-5, Glasgow, United Kingdom, 2024.
doi:10.23919/EuCAP60739.2024.10501268

27. Gupta, Sneha, Rachit Agnihotri, and Soumava Mukherjee, "Reconfigurable intelligent surfaces with suppressed quantization lobe for arbitrary reflection angles," 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 1-6, Ahmedabad, India, 2023.
doi:10.1109/MAPCON58678.2023.10463970

28. Balanis, Constantine A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley & Sons, Hoboken, New Jersey, 2005.

29. Bhattacharyya, Arun K., Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, John Wiley & Sons, 2006.

30. Chakraborty, Avishek, Gopi Ram, and Durbadal Mandal, "Optimal pulse shifting in timed antenna array for simultaneous reduction of sidelobe and sideband level," IEEE Access, Vol. 8, 131063-131075, 2020.
doi:10.1109/access.2020.3010047        Google Scholar

31. Zhang, Han, Bichao Bai, Jianfeng Zheng, and Yun Zhou, "Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization," IEEE Access, Vol. 8, 111945-111953, 2020.
doi:10.1109/access.2020.3001947        Google Scholar

32. Liang, Shuang, Zhiyi Fang, Geng Sun, Yanheng Liu, Guannan Qu, and Ying Zhang, "Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach," IEEE Access, Vol. 8, 37664-37683, 2020.
doi:10.1109/access.2020.2976127        Google Scholar

33. Fushimi, Tatsuki and Yusuke Koroyasu, "Multi focus acoustic field generation using Dammann gratings for phased array transducers," Results in Physics, Vol. 67, 108040, 2024.
doi:10.1016/j.rinp.2024.108040        Google Scholar

34. Chen, Fu-Chang, Hao-Tao Hu, Run-Shuo Li, Qing-Xin Chu, and Michael J. Lancaster, "Design of filtering microstrip antenna array with reduced sidelobe level," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 903-908, Feb. 2017.
doi:10.1109/tap.2016.2639469        Google Scholar

35. Parveez Shariff, B. G., Tanweer Ali, Pallavi R. Mane, Sameena Pathan, Qammer H. Abbasi, Masood Ur-Rehman, Yahia M. M. Antar, Satish Kumar Sharma, and Ahmed A. Kishk, "Wideband narrow-beam 16-element two-port MIMO array antenna with high isolation for automotive radar and 5G millimeter wave applications," IEEE Open Journal of Antennas and Propagation, Vol. 6, No. 5, 1502-1523, 2025.
doi:10.1109/ojap.2025.3588252        Google Scholar

36. Yang, Huanhuan, Tong Li, Liming Xu, Xiangyu Cao, Jun Gao, Jianghao Tian, Haonan Yang, and Dong Sun, "A new strategy to design microstrip antenna array with low side-lobe level and high gain," IEEE Access, Vol. 7, 152715-152721, 2019.
doi:10.1109/access.2019.2948098        Google Scholar