Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-10
High-Gain Dual Band MIMO Antenna Using Metamaterial Surface for Bluetooth, Wi-Fi and 5G Applications
By
Progress In Electromagnetics Research C, Vol. 166, 41-51, 2026
Abstract
In this paper, an elliptical monopole antenna is operated in fundamental mode by reducing the electromagnetic coupling (EMC) between higher-order modes. The electromagnetic coupling is decreased by decreasing the width of the radiating element and ground-plane dimensions, and increasing the gap between the radiating element and ground plane. The ellipse is sliced from the top, as there is little surface current on the top portion of a monopole. The symmetrical portion of this sliced elliptical monopole is selectively etched with little effect on impedance variation. Dual-band characteristics are obtained over 2.3-2.7 GHz (Wi-Fi and Bluetooth bands) and 5.4-5.9 GHz (WLAN band), as well as over 2.3-2.7 GHz (Wi-Fi and Bluetooth bands) and 5.13-5.71 GHz (WLAN band), depending on the etching amount. A rectangular strip is added to the etched monopole to operate over 2.3-2.7 GHz (Wi-Fi, Bluetooth bands) and 3.3-3.9 GHz (5G band). To enhance the gain of a compact dual-band antenna, a reflecting metamaterial surface consisting of an array of square patches is designed and placed below the structure. A high-gain dual-band MIMO antenna is designed by placing four elements orthogonally above the centre of four edges of the metamaterial surface. S11 < -10 dB, isolation > 18 dB and 22 dB, and antenna gain of 7.5 dBi and 7.4 dBi are obtained over 2.35-2.7 GHz and 3.3-3.6 GHz, respectively. The structure is fabricated. The measurement results validate the simulation ones.
Citation
Nilesh Lakade, Shankar D. Nawale, Anjali Rochkari, Mahadu Trimukhe, and Rajiv Kumar Gupta, "High-Gain Dual Band MIMO Antenna Using Metamaterial Surface for Bluetooth, Wi-Fi and 5G Applications," Progress In Electromagnetics Research C, Vol. 166, 41-51, 2026.
doi:10.2528/PIERC25120901
References

1. Kumar, Girish and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

2. Kumar, Om Prakash, Pramod Kumar, Tanweer Ali, Pradeep Kumar, and Shweta Vincent, "Ultrawideband antennas: Growth and evolution," Micromachines, Vol. 13, No. 1, 60, 2022.
doi:10.3390/mi13010060        Google Scholar

3. Singh, P. P., S. K. Sharma, and N. Gupta, "Design and performance analysis of a dual band patch antenna and its MIMO implementation for Wi-Fi, Radar, and V2X applications," Advanced Electromagnetics, Vol. 14, No. 2, 35-44, 2025.
doi:10.7716/aem.v14i2.2513        Google Scholar

4. Woo, Dong Sik, "A triple band C-shape monopole antenna for vehicle communication application," Progress In Electromagnetics Research C, Vol. 121, 97-106, 2022.
doi:10.2528/pierc22060202        Google Scholar

5. Thiruvenkadam, Saminathan and Eswaran Parthasarathy, "Compact multiband monopole antenna design for IoT applications," Journal of Electromagnetic Waves and Applications, Vol. 37, No. 5, 629-643, 2023.
doi:10.1080/09205071.2022.2163191        Google Scholar

6. El Hadri, D., A. Zugari, A. Zakriti, M. El Ouahabi, and M. Taouzari, "A compact triple band antenna for military satellite communication, radar and fifth generation applications," Advanced Electromagnetics, Vol. 9, No. 3, 66-73, 2020.
doi:10.7716/aem.v9i3.1420        Google Scholar

7. Salim, Ali J., Jabbar K. Mohammed, Hussam Al-Saedi, and Jawad K. Ali, "A proximity-fed multi-band printed antenna for wireless communication applications," Progress In Electromagnetics Research C, Vol. 145, 153-165, 2024.
doi:10.2528/pierc23122503        Google Scholar

8. Jing, Jianwei, Jiafei Pang, Hang Lin, Zhenyu Qiu, and Chang-Jun Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
doi:10.2528/pierl20071104        Google Scholar

9. Verulkar, Shubhangi M., Alka Khade, Mahadu Trimukhe, and Rajiv Kumar Gupta, "Dual band split ring monopole antenna structures for 5G and WLAN applications," Progress In Electromagnetics Research C, Vol. 122, 17-30, 2022.
doi:10.2528/pierc22050803        Google Scholar

10. Ran, Xiaoying, Zhen Yu, Tangyao Xie, Yao Li, Xiuxia Wang, and Peng Huang, "A novel dual-band binary branch fractal bionic antenna for mobile terminals," International Journal of Antennas and Propagation, Vol. 2020, No. 1, 6109093, 2020.
doi:10.1155/2020/6109093        Google Scholar

11. Wang, Lan, Jianguo Yu, Tangyao Xie, and Kun Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, Vol. 2021, No. 1, 9926753, 2021.
doi:10.1155/2021/9926753        Google Scholar

12. Al-Gburi, Ahmed Jamal Abdullah, Imran Mohd Ibrahim, Zahriladha Zakaria, Muhannad Kaml Abdulhameed, and Tale Saeidi, "Enhancing gain for UWB antennas using FSS: A systematic review," Mathematics, Vol. 9, No. 24, 3301, 2021.
doi:10.3390/math9243301        Google Scholar

13. Din, Iftikhar Ud, Sadiq Ullah, Syeda Iffat Naqvi, Raza Ullah, Shakir Ullah, Esraa Mousa Ali, and Mohammad Alibakhshikenari, "Improvement in the gain of UWB antenna for GPR applications by using frequency-selective surface," International Journal of Antennas and Propagation, Vol. 2022, No. 1, 2002552, 2022.
doi:10.1155/2022/2002552        Google Scholar

14. Daira, Seyf El Islem, Mohamed Lashab, Hemza A. Berkani, Mounir Belattar, Ibrahim Gharbia, and Raed A. Abd-Alhameed, "A curved single-layer FSS design for gain improvement of a compact size CPW-fed UWB monopole antenna," Microwave and Optical Technology Letters, Vol. 66, No. 1, e33943, 2024.
doi:10.1002/mop.33943        Google Scholar

15. Nakmouche, Mohammed F., Abdemegeed M. M. A. Allam, Diaa E. Fawzy, and D.-B. Lin, "Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.2528/pierm21083103        Google Scholar

16. Shi, Chengming, Jie Zou, Jing Gao, and Changjun Liu, "Gain enhancement of a dual-band antenna with the FSS," Electronics, Vol. 11, No. 18, 2882, 2022.
doi:10.3390/electronics11182882        Google Scholar

17. Verulkar, Shubhangi M., Anjali Rochkari, Mahadu Trimukhe, Varsha Bodade, and Rajiv Gupta, "High gain compact dual band antenna using frequency selective surface for 5G and WLAN applications," Progress In Electromagnetics Research C, Vol. 142, 1-11, 2024.
doi:10.2528/pierc24010101        Google Scholar

18. Abdelghany, Mahmoud A., Mohamed Fathy Abo Sree, Arpan Desai, and Ahmed A. Ibrahim, "Gain improvement of a dual-band CPW monopole antenna for sub-6 GHz 5G applications using AMC structures," Electronics, Vol. 11, No. 14, 2211, 2022.
doi:10.3390/electronics11142211        Google Scholar

19. Aggarwal, Ishita, Sujata Pandey, and Malay Ranjan Tripathy, "A high gain super wideband metamaterial based antenna," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 20, No. 2, 248-273, Jun. 2021.
doi:10.1590/2179-10742021v20i21147        Google Scholar

20. Mohammed, Dunya Zeki and Ahmed J. A. Al-Gburi, "Compact, gain-enhanced 5G mmWave antenna with metallic ground-backed reflector for high-speed railway communication systems," High-speed Railway, Vol. 3, No. 4, 281-292, 2025.
doi:10.1016/j.hspr.2025.08.004        Google Scholar

21. Sharma, Usha, Garima Srivastava, Mukesh K. Khandelwal, and Rashmi Roges, "Design challenges and solutions of multiband MIMO antenna for 5G/6G wireless applications: A comprehensive review," Progress In Electromagnetics Research B, Vol. 104, 69-89, 2024.
doi:10.2528/pierb23101904        Google Scholar

22. Srinubabu, Manumula and Nuthakki Venkata Rajasekhar, "A compact and efficiently designed two-port MIMO antenna for N78/48 5G applications," Heliyon, Vol. 10, No. 7, e28981, 2024.
doi:10.1016/j.heliyon.2024.e28981        Google Scholar

23. Deshmukh, Amit A., Shankar D. Nawale, Vijay R. Kapure, Shubhangi A. Deshmukh, Mahadu A. Trimukhe, and Rajiv K. Gupta, "Highly isolated compact dual-band MIMO antenna using stubs, slots and neutralization line for 5G Wi-MAX and WLAN applications," Progress In Electromagnetics Research C, Vol. 158, 27-35, 2025.
doi:10.2528/PIERC25051801        Google Scholar

24. Kulkarni, Jayshri, Chow-Yen-Desmond Sim, Ravi Kumar Gangwar, and Jaume Anguera, "Broadband and compact circularly polarized MIMO antenna with concentric rings and oval slots for 5G application," IEEE Access, Vol. 10, 29925-29936, 2022.
doi:10.1109/access.2022.3157914        Google Scholar

25. Verulkar, Shubhangi Mangesh, Alka Khade, Mahadu A. Trimukhe, and Rajiv Kumar Gupta, "Compact wideband four elements MIMO antenna for 5G applications," Progress In Electromagnetics Research C, Vol. 137, 199-209, 2023.
doi:10.2528/PIERC23051501        Google Scholar

26. Graham, Aaron M., Spyridon Nektarios Daskalakis, Vincent Fusco, Manos M. Tentzeris, and Stylianos D. Asimonis, "A highly efficient, scalable, tetra-band metamaterial-based ambient RF energy harvester," IEEE Transactions on Microwave Theory and Techniques, Vol. 73, No. 9, 6787-6798, 2025.
doi:10.1109/tmtt.2025.3555848        Google Scholar