Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-09
A Miniaturized Highly Isolated Quad-Port Penta-Band-Notched UWB MIMO Antenna Based on EBG Structures
By
Progress In Electromagnetics Research C, Vol. 166, 19-26, 2026
Abstract
This paper presents a miniaturized quad-port ultrawideband (UWB) MIMO antenna that integrates band-notch functionality and exhibits high isolation. The design employed four circular monopole radiators positioned on a modified defected ground structure (DGS), and periodic electromagnetic bandgap (EBG). These EBG components are an advanced variation of traditional mushroom-type structures that incorporate grid-shaped top patches, a metallic ground plane, and multiple vias connecting both layers. Located at the center of the substrate, the EBG network effectively reduces the electromagnetic coupling between adjacent radiating elements. To achieve multi-band rejection, five inverted U-shaped slots are etched into each monopole, enabling selective suppression of unwanted frequencies at 3.36-3.56 GHz, 3.72-3.92 GHz, 4.11-4.32 GHz, 4.59-4.83 GHz, and 5.22-5.50 GHz, corresponding to WiMAX, C-band, Wi-Fi, INSAT, and WLAN systems. Experimental validation confirms that the antenna attains -10 dB impedance bandwidth extending from 3.0 to 14.0 GHz, with inter-element isolation above -22.5 dB, gain of 6.2 dB, and radiation efficiency reaching 79.2%.
Citation
Koritala Nagavardhani, Pullagura Rajesh Kumar, and Veera Malleswara Rao, "A Miniaturized Highly Isolated Quad-Port Penta-Band-Notched UWB MIMO Antenna Based on EBG Structures," Progress In Electromagnetics Research C, Vol. 166, 19-26, 2026.
doi:10.2528/PIERC25121605
References

1. FCC, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems," First Report and Order, ET Docket 98-153, 2002.

2. Khan, Muhammad Kabir, Quanyuan Feng, and Zongliang Zheng, "Experimental investigation and design of UWB MIMO antenna with enhanced isolation," Progress In Electromagnetics Research C, Vol. 107, 287-297, 2021.
doi:10.2528/pierc20103002        Google Scholar

3. Ali, Wael A. E. and Ahmed A. Ibrahim, "A compact double-sided MIMO antenna with an improved isolation for UWB applications," AEU --- International Journal of Electronics and Communications, Vol. 82, 7-13, 2017.
doi:10.1016/j.aeue.2017.07.031        Google Scholar

4. Zhu, Jianfeng, Shufang Li, Botao Feng, Li Deng, and Sixing Yin, "Compact dual-polarized UWB quasi-self-complementary MIMO/diversity antenna with band-rejection capability," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 905-908, 2016.
doi:10.1109/lawp.2015.2479622        Google Scholar

5. Tripathi, Shrivishal, Akhilesh Mohan, and Sandeep Yadav, "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1565-1568, 2015.
doi:10.1109/lawp.2015.2412659        Google Scholar

6. Urimubenshi, Felix, Dominic B. O. Konditi, Jean de Dieu Iyakaremye, Pierre Moukala Mpele, and Augustin Munyaneza, "A novel approach for low mutual coupling and ultra-compact two port MIMO antenna development for UWB wireless application," Heliyon, Vol. 8, No. 3, e09057, 2022.
doi:10.1016/j.heliyon.2022.e09057        Google Scholar

7. Khan, Muhammad Kabir and Quanyuan Feng, "Design validation of UWB MIMO antenna with enhanced isolation and novel strips for stop-band characteristics," Entropy, Vol. 24, No. 6, 766, 2022.
doi:10.3390/e24060766        Google Scholar

8. Navarro-Peralta, Andrik Nathaniel, Gabriela Leija-Hernández, and Luis Alejandro Iturri-Hinojosa, "Mutual coupling reduction between elements of UWB MIMO antenna using DGS enhancing the impedance bandwidth," 2023 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), 1-6, Ixtapa, Mexico, 2023.
doi:10.1109/ROPEC58757.2023.10409353

9. Babu, Sadineni Ramesh and Puttaraje Dinesha, "Design of penta-band notched UWB MIMO antenna for diverse wireless applications," Progress In Electromagnetics Research M, Vol. 107, 35-49, 2022.
doi:10.2528/pierm21112602        Google Scholar

10. Balanis, Constantine A., Antenna Theory: Analysis and Design, Chap. 14, 811–872, John Wiley & Sons, 2005.

11. Ding, Kang, Cheng Gao, Dexin Qu, and Qin Yin, "Compact broadband MIMO antenna with parasitic strip," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2349-2353, 2017.
doi:10.1109/lawp.2017.2718035        Google Scholar

12. Khan, Muhammad Saeed, Antonio-Daniele Capobianco, Ali Imran Najam, Imran Shoaib, Elena Autizi, and Muhammad Farhan Shafique, "Compact ultra-wideband diversity antenna with a floating parasitic digitated decoupling structure," IET Microwaves, Antennas & Propagation, Vol. 8, No. 10, 747-753, Jul. 2014.
doi:10.1049/iet-map.2013.0672        Google Scholar

13. Dabas, Tanvi, Deepak Gangwar, Binod Kumar Kanaujia, and A. K. Gautam, "Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands," AEU --- International Journal of Electronics and Communications, Vol. 93, 32-38, 2018.
doi:10.1016/j.aeue.2018.05.033        Google Scholar

14. Markley, Loc and George V. Eleftheriades, "A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 28-32, 2007.
doi:10.1109/lawp.2007.890758        Google Scholar

15. Assimonis, Stylianos D., Traianos V. Yioultsis, and Christos S. Antonopoulos, "Computational investigation and design of planar EBG structures for coupling reduction in antenna applications," IEEE Transactions on Magnetics, Vol. 48, No. 2, 771-774, 2012.
doi:10.1109/tmag.2011.2172680        Google Scholar

16. Saritha, Vanka, V. N. Koteswara Rao Devana, M. Bhagya Lakshmi, Md. Ahsan Halimi, G.Gayatri Devi, Nageswara Rao Lavuri, and Ahmed J. A. Al-Gburi, "Low-profile four-port MIMO antenna realizing penta-band notches for UWB systems," Optik, Vol. 336, 172454, 2025.
doi:10.1016/j.ijleo.2025.172454        Google Scholar

17. Babu, Sadineni Ramesh and Puttaraje Dinesha, "Design and development of a miniaturized highly isolated UWB-MIMO diversity antenna with quad band notch characteristics," Progress In Electromagnetics Research C, Vol. 131, 197-208, 2023.
doi:10.2528/pierc22123002        Google Scholar

18. Eltrass, Ahmed S. and Nahla A. Elborae, "New design of UWB-MIMO antenna with enhanced isolation and dual-band rejection for WiMAX and WLAN systems," IET Microwaves, Antennas & Propagation, Vol. 13, No. 5, 683-691, 2019.
doi:10.1049/iet-map.2018.5810        Google Scholar

19. Tang, Zhijun, Xiaofeng Wu, Jie Zhan, Shigang Hu, Zaifang Xi, and Yunxin Liu, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," IEEE Access, Vol. 7, 19856-19865, 2019.
doi:10.1109/access.2019.2897170        Google Scholar

20. Abbas, Anees, Niamat Hussain, Md. Abu Sufian, Jinkyu Jung, Sang Myeong Park, and Nam Kim, "Isolation and gain improvement of a rectangular notch UWB-MIMO antenna," Sensors, Vol. 22, No. 4, 1460, 2022.
doi:10.3390/s22041460        Google Scholar

21. Biswal, Sonika Priyadarsini and Sushrut Das, "A low‐profile dual port UWB‐MIMO/diversity antenna with band rejection ability," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 1, e21159, 2018.
doi:10.1002/mmce.21159        Google Scholar

22. Kumar, Praveen, Tanweer Ali, and Manohara Pai Mm, "Characteristic mode analysis-based compact dual band-notched UWB MIMO antenna loaded with neutralization line," Micromachines, Vol. 13, No. 10, 1599, 2022.
doi:10.3390/mi13101599        Google Scholar

23. Mchbal, A., N. Amar Touhami, H. Elftouh, and A. Dkiouak, "Mutual coupling reduction using a protruded ground branch structure in a compact UWB owl‐shaped MIMO antenna," International Journal of Antennas and Propagation, Vol. 2018, No. 1, 4598527, Sep. 2018.
doi:10.1155/2018/4598527        Google Scholar

24. Chandel, Richa, Anil Kumar Gautam, and Karumudi Rambabu, "Design and packaging of an eye-shaped multiple-input–multiple-output antenna with high isolation for wireless UWB applications," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 8, No. 4, 635-642, Apr. 2018.
doi:10.1109/tcpmt.2018.2806562        Google Scholar

25. Chandel, Richa, Anil Kumar Gautam, and Karumudi Rambabu, "Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1677-1684, Apr. 2018.
doi:10.1109/tap.2018.2803134        Google Scholar

26. Khan, Muhammad Saeed, A.-D. Capobianco, Sajid M. Asif, Dimitris E. Anagnostou, Raed M. Shubair, and Benjamin D. Braaten, "A compact CSRR-enabled UWB diversity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 808-812, 2016.
doi:10.1109/lawp.2016.2604843        Google Scholar

27. Sipal, Deepika, Mahesh P. Abegaonkar, and Shiban Kishen Koul, "Easily extendable compact planar UWB MIMO antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2328-2331, 2017.
doi:10.1109/lawp.2017.2717496        Google Scholar

28. Liu, Li, S. W. Cheung, and T. I. Yuk, "Compact MIMO antenna for portable devices in UWB applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4257-4264, Aug. 2013.
doi:10.1109/tap.2013.2263277        Google Scholar

29. Yang, Fan and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/tap.2003.817983        Google Scholar