Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-09
A Design Approach of High-Efficiency Filtering Power Amplifiers Using Harmonic-Tuned Network and Terminated Coupled-Line Structures
By
Progress In Electromagnetics Research C, Vol. 166, 1-8, 2026
Abstract
A design approach using a harmonic-tuned network (HTN) and terminated coupled-line structures (TCLSs) for high-efficiency filtering power amplifiers (FPA) is proposed in this paper, effectively addressing the efficiency degradation caused by the integration of filtering structures in conventional FPA designs. The proposed approach enables compact circuitry while providing bandpass filtering characteristics. Bandpass filtering is realized through the cascaded TCLSs, while the incorporation of open-circuit and short-circuit branches introduces additional transmission zeros and poles, significantly improving frequency selectivity. In addition, HTN enables precise control of the harmonic impedance, effectively improving the efficiency of the power amplifier (PA). Based on this approach, an FPA operating in the 2.3-2.6 GHz band is designed and implemented. Experimental results show that the FPA achieves a output power (Pout) of 40.8-41.3 dBm, a drain efficiency (DE) of 67.2-72.2%, a gain of 12.8-13.3 dB, and stopband suppression greater than 39 dB on both sides of the passband. These results verify the effectiveness of the proposed design in enhancing PA efficiency and enabling circuit miniaturization, while also providing a feasible design approach for FPA development.
Citation
Lang Ran, Bin Wang, Yongxin Wang, and Shihao Chen, "A Design Approach of High-Efficiency Filtering Power Amplifiers Using Harmonic-Tuned Network and Terminated Coupled-Line Structures," Progress In Electromagnetics Research C, Vol. 166, 1-8, 2026.
doi:10.2528/PIERC25122409
References

1. Feng, Ting, Kaixue Ma, Yongqiang Wang, and Jianquan Hu, "Bandpass-filtering power amplifier with compact size and wideband harmonic suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 2, 1254-1268, 2022.
doi:10.1109/tmtt.2021.3124254        Google Scholar

2. Liu, Chang, "Analysis of class-F power amplifiers with a second-harmonic input voltage manipulation," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 2, 225-229, 2020.
doi:10.1109/tcsii.2019.2912654        Google Scholar

3. Ekhteraei, Milad, Mohsen Hayati, and Farzin Shama, "High-efficiency low voltage inverse class-F power amplifier design based on harmonic control network analysis," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 3, 806-814, 2020.
doi:10.1109/tcsi.2019.2952932        Google Scholar

4. Nan, Jingchang, Jiadong Yu, and Heyang Sun, "A design approach for high-efficiency hybrid continuous extended inverse class-F broadband power amplifier using band-pass network topology," Progress In Electromagnetics Research M, Vol. 130, 129-137, 2024.
doi:10.2528/pierm24110303        Google Scholar

5. Jian, Yelong, Guohua Liu, Zhiqun Cheng, Zhong Zhao, and Weirong Wang, "Compact broadband high-efficiency power amplifier using terminated coupled line filter matching network," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 11, e22815, 2021.
doi:10.1002/mmce.22815        Google Scholar

6. Chen, Kenle, Juseop Lee, William J. Chappell, and Dimitrios Peroulis, "Co-design of highly efficient power amplifier and high-Q output bandpass filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 11, 3940-3950, 2013.
doi:10.1109/tmtt.2013.2284485        Google Scholar

7. Gao, Yang, Xiaobang Shang, Lei Li, Cheng Guo, and Yi Wang, "Integrated filter-amplifiers: A comprehensive review," IEEE Microwave Magazine, Vol. 23, No. 6, 57-75, 2022.
doi:10.1109/mmm.2022.3155034        Google Scholar

8. Xu, Jin-Xu, Xiu Yin Zhang, and Xiao-Qu Song, "High-efficiency filter-integrated class-F power amplifier based on dielectric resonator," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 9, 827-829, 2017.
doi:10.1109/lmwc.2017.2734778        Google Scholar

9. Pech, Phanam, Phirun Kim, and Yongchae Jeong, "Microwave amplifier with substrate integrated waveguide bandpass filter matching network," IEEE Microwave and Wireless Components Letters, Vol. 31, No. 4, 401-404, 2021.
doi:10.1109/lmwc.2021.3059859        Google Scholar

10. Gao, Yang, Weiming Ma, Di Lu, Baoqi Zhu, Pengcheng Jia, and Ming Yu, "A coupling matrix synthesized three-dimensional filtering power amplifier," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 71, No. 7, 3074-3085, 2024.
doi:10.1109/tcsi.2024.3352603        Google Scholar

11. Boumalkha, Mohamed, Mohammed Lahsaini, Moulay El Hassane Archidi, and Younes Achaoui, "Design of a wideband, highly efficient FPA using an asymmetrical open-circuit coupled-lines-based filtering matching network," AEU --- International Journal of Electronics and Communications, Vol. 178, 155293, 2024.
doi:10.1016/j.aeue.2024.155293        Google Scholar

12. Haider, Muhammad Furqan, Fei You, Weimin Shi, Shakeel Ahmad, and Tian Qi, "Broadband power amplifier using Hairpin bandpass filter matching network," Electronics Letters, Vol. 56, No. 4, 182-184, 2020.
doi:10.1049/el.2019.3047        Google Scholar

13. Boumalkha, Mohamed, Mohammed Lahsaini, Moulay El Hassane Archidi, Mahmoud F. Ghareeb, Ahmed S. I. Amar, Eyad S. Oda, and Sherif F. Nafea, "Design of highly efficient filtering power amplifier with a wideband response for sub-6 GHz 5G applications," Results in Engineering, Vol. 24, 102905, 2024.
doi:10.1016/j.rineng.2024.102905        Google Scholar

14. Wang, Weimin, Hongmin Zhao, Yongle Wu, and Xiaopan Chen, "5G wideband bandpass filtering power amplifiers based on a bandwidth-extended bandpass matching network," China Communications, Vol. 20, No. 11, 56-66, 2023.
doi:10.23919/jcc.ea.2022-0349.202302        Google Scholar

15. Pan, Leidan, Yongle Wu, Weimin Wang, Shaobo Li, Anna Piacibello, and Vittorio Camarchia, "A broadband tunable high-selectivity bandpass filter and filtering power amplifier with continuous tunability and high stopband suppression level," Microelectronics Journal, Vol. 166, 106911, 2025.
doi:10.1016/j.mejo.2025.106911        Google Scholar

16. Su, Zhilin, Cuiping Yu, Bihua Tang, and Yuanan Liu, "Bandpass filtering power amplifier with extended band and high efficiency," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 2, 181-184, 2020.
doi:10.1109/lmwc.2020.2966067        Google Scholar

17. Zhuang, Zheng, Yongle Wu, Mengdan Kong, and Weimin Wang, "High-selectivity single-ended/balanced DC-block filtering impedance transformer and its application on power amplifier," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 67, No. 12, 4360-4369, 2020.
doi:10.1109/tcsi.2020.3015883        Google Scholar

18. Qi, Xiaobo and Fei Xiao, "Filtering power amplifier with up to 4th harmonic suppression," IEEE Access, Vol. 8, 29021-29026, 2020.
doi:10.1109/access.2020.2972739        Google Scholar

19. Jian, Yelong, Guohua Liu, and Zhiqun Cheng, "Design of a broadband bandpass filtering power amplifier for 5G communication," Microwave and Optical Technology Letters, Vol. 64, No. 9, 1593-1599, 2022.
doi:10.1002/mop.33334        Google Scholar

20. Li, Yuan Chun, Run-Ze Zhan, and Quan Xue, "Highly efficient filtering power amplifier using impedance area-based optimization," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 70, No. 2, 556-565, 2023.
doi:10.1109/tcsi.2022.3217798        Google Scholar

21. Li, Shaobo, Yongle Wu, Yuhao Yang, Xiaopan Chen, Weimin Wang, and Zhuoyin Chen, "Bandpass filtering power amplifier with wide stopband and high out-of-band rejection," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 70, No. 3, 969-973, 2023.
doi:10.1109/tcsii.2022.3220619        Google Scholar

22. Liu, Guohua, Jianyuan Yu, and Yijun Lin, "Wideband filtering power amplifier based on terminated coupled line structure," International Journal of Microwave and Wireless Technologies, Vol. 16, No. 3, 418-423, 2024.
doi:10.1017/s1759078724000059        Google Scholar

23. Wang, Kun, Zhiqun Cheng, Minshi Jia, Zheming Zhu, Baoquan Zhong, Zhenghao Yang, and Bingxin Li, "Design of a series of inverse continuous modes power amplifier based on bandpass filter," International Journal of Circuit Theory and Applications, Vol. 53, No. 7, 3949-3955, 2025.
doi:10.1002/cta.4330        Google Scholar

24. Zhong, Baoquan, Zhiqun Cheng, Minshi Jia, Bingxin Li, Kun Wang, Zhenghao Yang, and Zheming Zhu, "Design of bandpass filtering power amplifier based on coupled microstrip line structure," IEICE Transactions on Electronics, Vol. E108-C, No. 5, 237-244, 2025.
doi:10.1587/transele.2024ecp5043        Google Scholar