Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-13
Design and Analysis of a Symmetric CPW-Fed Slot Ring Antenna with Uniform Gaps for Multi-Band ISM, WiMAX, Satellite Applications
By
Progress In Electromagnetics Research C, Vol. 166, 106-112, 2026
Abstract
In this study, we describe a circular ring slot antenna with three circular holes, which is supplied by a CPW-fed split ring resonator metamaterial. This proposed antenna covers sophisticated satellite communication applications for wireless devices, including 5G, military, and aerial radar, and resonates between 2.4 GHz and 10.4 GHz, with a center frequency of 3.542 GHz and an S11 of -37.7 dB, and a center frequency of 7.5 GHz and an S11 of -30.4 dB, respectively. The produced antenna satisfactorily validates the specified antenna metrics. The suggested antenna is built on an affordable FR4 substrate and has physical dimensions of 38 × 38 × 1.6 mm3. The proposed simulated design antenna is validated by the measured data. The results show a good correlation between the measured data and the simulation. The operational impedance range of the proposed antenna is less than -10 dB. The circular ring slot antenna has proven to be remarkably capable of reaching multiband frequencies of 3.54 GHz and 7.5 GHz. The proposed antenna may have an effect on radiation characteristics and gain, resulting in a good contender. Each component of the circle-shaped ring slot antenna design is essential to achieving the important and encouraging results.
Citation
Ravi Kumar Maddumala, Kollipara Radha, Udara Yedukondalu, Vasudha Vijayasri Bolisetty, and Kottapadikal Vinodan Vineetha, "Design and Analysis of a Symmetric CPW-Fed Slot Ring Antenna with Uniform Gaps for Multi-Band ISM, WiMAX, Satellite Applications," Progress In Electromagnetics Research C, Vol. 166, 106-112, 2026.
doi:10.2528/PIERC25123002
References

1. Hossain, M. J., M. R. I. Faruque, and M. T. Islam, "Design of a patch antenna for ultra wide band applications," Microwave and Optical Technology Letters, Vol. 58, No. 9, 2152-2156, 2016.
doi:10.1002/mop.29993        Google Scholar

2. Saha, Tonmoy K., Carlene Goodbody, Tutku Karacolak, and Praveen K. Sekhar, "A compact monopole antenna for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 1, 182-186, 2019.
doi:10.1002/mop.31519        Google Scholar

3. Kadam, Ameya A., Amit A. Deshmukh, Sanjay B. Deshmukh, Akshay Doshi, and Kamla Prasan Ray, "Slit loaded circular ultra wideband antenna for band notch characteristics," 2019 National Conference on Communications (NCC), 1-6, Bangalore, India, 2019.
doi:10.1109/NCC.2019.8732202

4. Khandelwal, Mukesh Kumar, Binod Kumar Kanaujia, and Sachin Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, Vol. 2017, No. 1, 2018527, 2017.
doi:10.1155/2017/2018527        Google Scholar

5. Prakash, Karavilavadakkethil Chellappan, Sumitha Mathew, Ramachandran Anitha, Puthiyapurayil Viswanathan Vinesh, Methapettyparambu Jayakrishnan, Pezholil Mohanan, and Kesavath Vasudevan, "Circularly polarized dodecagonal patch antenna with polygonal slot for RFID applications," Progress In Electromagnetics Research C, Vol. 61, 9-15, 2016.
doi:10.2528/pierc15110301        Google Scholar

6. Abu Safia, Ousama, Mourad Nedil, Larbi Talbi, and Khelifa Hettak, "Coplanar waveguide-fed rose-curve shape UWB monopole antenna with dual-notch characteristics," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1112-1119, 2018.
doi:10.1049/iet-map.2017.0852        Google Scholar

7. Srivastava, Kunal, Ashwani Kumar, Binod K. Kanaujia, Santanu Dwari, Anand Kumar Verma, Karu P. Esselle, and Raj Mittra, "Integrated GSM-UWB Fibonacci-type antennas with single, dual, and triple notched bands," IET Microwaves, Antennas & Propagation, Vol. 12, No. 6, 1004-1012, 2018.
doi:10.1049/iet-map.2017.0074        Google Scholar

8. Zeng, Yichao, Hou Zhang, Ying Zhang, and Haizhou Zhao, "Compact band-notched UWB antenna based on CSRR for WiMAX/WLAN applications," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Chengdu, China, 2018.
doi:10.1109/ICMMT.2018.8563741

9. De, Arnab, Bappadittya Roy, and Anup Kumar Bhattacharjee, "Dual-notched monopole antenna using DGS for WLAN and Wi-MAX applications," Journal of Circuits, Systems and Computers, Vol. 28, No. 11, 1950189, 2019.
doi:10.1142/s0218126619501895        Google Scholar

10. Seo, Y. S., J. W. Jung, H. J. Lee, and Y. S. Lim, "Design of trapezoid monopole antenna with band-notched performance for UWB," Electronics Letters, Vol. 48, No. 12, 673-674, 2012.
doi:10.1049/el.2012.0650        Google Scholar

11. Bhattacharya, Ankan, Bappadittya Roy, Santosh K. Chowdhury, and Anup K. Bhattacharjee, "Compact slotted UWB monopole antenna with tuneable band-notch characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 9, 2358-2365, 2017.
doi:10.1002/mop.30730        Google Scholar

12. Sharma, Priyanka, Kirti Vyas, and Rajendra Prasad Yadav, "Design and analysis of miniaturized UWB antenna with tunable notched band," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 3, 691-696, 2017.
doi:10.1017/s1759078716000489        Google Scholar

13. Ye, L.-H. and Q.-X. Chu, "3.5/5.5 GHz dual band-notch ultra-wideband slot antenna with compact size," Electronics Letters, Vol. 46, No. 5, 325-327, 2010.
doi:10.1049/el.2010.2722        Google Scholar

14. Salamin, Mohammad Ahmad, Wael Ali, and Asmaa Zugari, "Design and analysis of a miniaturized band-notched planar antenna incorporating a joint DMS and DGS band-rejection technique for UWB applications," Microsystem Technologies, Vol. 25, No. 9, 3375-3385, 2019.
doi:10.1007/s00542-018-4183-9        Google Scholar

15. Peddakrishna, Samineni and Taimoor Khan, "Design of UWB monopole antenna with dual notched band characteristics by using π-shaped slot and EBG resonator," AEU --- International Journal of Electronics and Communications, Vol. 96, 107-112, 2018.
doi:10.1016/j.aeue.2018.09.014        Google Scholar

16. Mukherjee, Bhupesh, Sweta Guha Thakurta, Rwitaban Roy, Ahana Das, Arkapravo Banerjee, Indranil Aich, Supratim Mukherjee, and Arnab Mukherjee, "Coplanar waveguide fed ultra-wide band printed slot antenna with dual band-notch characteristics," 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), 314-317, Bangkok, Thailand, 2017.
doi:10.1109/IEMECON.2017.8079613

17. Lui, W. J., C. H. Cheng, and H. B. Zhu, "Frequency notched printed slot antenna with parasitic open-circuit stub," Electronics Letters, Vol. 41, No. 20, 1094-1095, 2005.
doi:10.1049/el:20052544        Google Scholar

18. Yadav, Ajay, Sweta Agrawal, and R. P. Yadav, "SRR and S-shape slot loaded triple band notched UWB antenna," AEU --- International Journal of Electronics and Communications, Vol. 79, 192-198, 2017.
doi:10.1016/j.aeue.2017.06.003        Google Scholar

19. Zhou, Yang, Jingjian Huang, Weiwei Wu, and Naichang Yuan, "An antipodal Vivaldi antenna with band-notched characteristics for ultra-wideband applications," AEU --- International Journal of Electronics and Communications, Vol. 76, 152-157, 2017.
doi:10.1016/j.aeue.2017.03.026        Google Scholar

20. Ansari, Jamshed, Nagendra Prasad Yadav, Prabhakar Singh, and Anurag Mishra, "Compact half U-slot loaded shorted rectangular patch antenna for broadband operation," Progress In Electromagnetics Research M, Vol. 9, 215-226, 2009.
doi:10.2528/pierm09090102        Google Scholar

21. Bonache, J., M. Gil, I. Gil, J. Garcia-Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 10, 543-545, 2006.
doi:10.1109/lmwc.2006.882400        Google Scholar