Vol. 166
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2026-02-11
Lower Cost Variable-Leakage-Flux Reverse-Salient-Pole Permanent Magnet Motor by Reducing Rare-Earth Permanent Magnet Usage
By
Progress In Electromagnetics Research C, Vol. 166, 57-67, 2026
Abstract
This paper proposes a novel less-rare-earth variable-leakage-flux reverse-salient-pole motor (LRE-VLF-RSPM). The proposed motor achieves the reverse-salient-pole and variable-leakage-flux characteristics by reasonably arranging three layers of arc-shaped flux barriers between adjacent magnetic poles. Furthermore, it incorporates ferrite magnets to reduce the usage of rare-earth permanent magnets by one-third while maintaining torque output, thereby fulfilling the less-rare-earth objective. First, the paper introduces the rotor topology and operational principle. Subsequently, it employs two-dimensional finite element analysis (FEA) to compare the electromagnetic performance - including torque, flux-weakening capability, constant power speed range (CPSR), and high-efficiency region proportion - among a conventional V-type synchronous motor (CTVSM), a variable-leakage-flux reverse-salient-pole motor (VLF-RSPM), and the LRE-VLF-RSPM. The final results demonstrate that the proposed motor reduces rare-earth usage by one-third compared to the benchmark motor and exhibits superior flux-weakening capability, a wide constant power speed range, and a large high-efficiency region. These findings verify the effectiveness and feasibility of the proposed motor.
Citation
Xiping Liu, Hongzhan Hu, Qianli Jia, Zhangqi Liu, and Zhiguo Zhu, "Lower Cost Variable-Leakage-Flux Reverse-Salient-Pole Permanent Magnet Motor by Reducing Rare-Earth Permanent Magnet Usage," Progress In Electromagnetics Research C, Vol. 166, 57-67, 2026.
doi:10.2528/PIERC25123004
References

1. Ehsani, Mehrdad, Krishna Veer Singh, Hari Om Bansal, and Ramin Tafazzoli Mehrjardi, "State of the art and trends in electric and hybrid electric vehicles," Proceedings of the IEEE, Vol. 109, No. 6, 967-984, Jun. 2021.
doi:10.1109/jproc.2021.3072788        Google Scholar

2. Hu, Zhemin, Ramin Tafazzoli Mehrjardi, and Mehrdad Ehsani, "On the lifetime emissions of conventional, hybrid, plug-in hybrid and electric vehicles," IEEE Transactions on Industry Applications, Vol. 60, No. 2, 3502-3511, Mar.-Apr. 2024.
doi:10.1109/tia.2023.3330950        Google Scholar

3. Chen, Zhongxian and Guanglin Li, "A V type permanent magnet motor simulation analysis and prototype test for electric vehicle," IEEE Access, Vol. 7, 174839-174846, 2019.
doi:10.1109/access.2019.2957420        Google Scholar

4. Sheela, A. and M. Atshaya Mohan, "Design of permanent magnet synchronous motor for electric vehicle application using finite element analysis," International Journal of Scientific & Technology Research, Vol. 9, No. 3, 523-527, 2020.        Google Scholar

5. Wu, Wenye, Jiayi Zhao, Ran Zhang, and Yan Dong, "Design and analysis of a new permanent magnet machine with flux-intensifying property," 2022 IEEE 20th Biennial Conference on Electromagnetic Field Computation (CEFC), 1-2, Denver, CO, USA, 2022.
doi:10.1109/CEFC55061.2022.9940873

6. Do, Viet-Vu, Thanh-Anh Huynh, and Min-Fu Hsieh, "Design and analysis of flux-intensifying spoke-type IPM motor for improving output torque and flux-weakening performance," 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 1-6, Chiang Mai, Thailand, 2022.
doi:10.1109/ICEMS56177.2022.9983195

7. Chu, Jinlong, He Cheng, Junhang Sun, Cheng Peng, and Yihua Hu, "Multi-objective optimization design of hybrid excitation double stator permanent magnet synchronous machine," IEEE Transactions on Energy Conversion, Vol. 38, No. 4, 2364-2375, Dec. 2023.
doi:10.1109/tec.2023.3279934        Google Scholar

8. Wang, Xu, Ying Fan, Qiushuo Chen, and Zhanchuan Wu, "Magnetic circuit feature investigation of a radial-axial brushless hybrid excitation machine for electric vehicles," IEEE Transactions on Transportation Electrification, Vol. 9, No. 1, 382-393, Mar. 2023.
doi:10.1109/tte.2022.3199435        Google Scholar

9. Wang, Daohan, Dengxu Zhang, Donghui Xue, Chen Peng, and Xiuhe Wang, "A new hybrid excitation permanent magnet machine with an independent AC excitation port," IEEE Transactions on Industrial Electronics, Vol. 66, No. 8, 5872-5882, Aug. 2019.
doi:10.1109/tie.2018.2873282        Google Scholar

10. Hu, Yusheng, Bin Chen, Yong Xiao, Xia Li, Zhidong Zhang, Jinfei Shi, and Liyi Li, "Research and design on reducing the difficulty of magnetization of a hybrid permanent magnet memory motor," IEEE Transactions on Energy Conversion, Vol. 35, No. 3, 1421-1431, Sep. 2020.
doi:10.1109/tec.2020.2989530        Google Scholar

11. Li, Nian, Da Xu, Xiangjun Hao, and Jianhui Li, "Design and analysis of a series-type permanent magnet axial flux-switching memory machine," Energies, Vol. 15, No. 23, 8954, Nov. 2022.
doi:10.3390/en15238954        Google Scholar

12. Li, Qing, Mingcheng Lyu, Jiangtao Yang, and Shoudao Huang, "Analysis of a novel mechanically adjusted variable flux permanent magnet homopolar inductor machine with rotating magnetic poles for flywheel energy storage system," CES Transactions on Electrical Machines and Systems, Vol. 6, No. 3, 315-323, Sep. 2022.
doi:10.30941/cestems.2022.00030        Google Scholar

13. Sun, Tongze, Xiping Liu, Yongling Zou, Chaozhi Huang, and Jianwei Liang, "Design and optimization of a mechanical variable-leakage-flux interior permanent magnet machine with auxiliary rotatable magnetic poles," CES Transactions on Electrical Machines and Systems, Vol. 5, No. 1, 21-29, Mar. 2021.
doi:10.30941/cestems.2021.00004        Google Scholar

14. Lu, Ruipan, Zhangqi Liu, Xiping Liu, Jianwei Liang, Weiliang Wu, and Wenrui Wang, "Electromagnetic characteristic analysis and optimization of a novel reverse salient PMSM for wide speed range," Progress In Electromagnetics Research C, Vol. 140, 105-115, 2024.
doi:10.2528/pierc23110203        Google Scholar

15. Wang, Huimin, Zhongyuan Hao, Xiangyi Li, Guokai Jiang, and Liyan Guo, "Reverse salient pole design of interior pole-changing permanent magnet synchronous motor," Journal of Magnetics, Vol. 29, No. 1, 77-87, 2024.
doi:10.4283/jmag.2024.29.1.77        Google Scholar

16. Yu, Xuefeng, Xiaoyong Zhu, Li Quan, Zixuan Xiang, and Deyang Fan, "Investigation and regulation of high-efficiency region boundary of variable magnetic flux permanent magnet motor," Chinese Journal of Electrical Engineering, Vol. 10, No. 3, 135-146, Sep. 2024.
doi:10.23919/cjee.2024.000073        Google Scholar

17. Xu, Lei, Xiaoyong Zhu, Wenye Wu, Wenjie Fan, Xue Zhou, Xiaolei Cai, and Li Quan, "Flux-leakage design principle and multiple-operating conditions modeling of flux leakage controllable PM machine considering driving cycles," IEEE Transactions on Industrial Electronics, Vol. 69, No. 9, 8862-8874, Sep. 2022.
doi:10.1109/tie.2021.3116588        Google Scholar

18. Liu, Xiping, Gaosheng Guo, Siting Zhu, and Jianwei Liang, "Design and analysis of variable leakage flux flux-intensifying motor for improve flux-weakening ability," Progress In Electromagnetics Research M, Vol. 103, 221-233, 2021.
doi:10.2528/pierm21070204        Google Scholar

19. Liu, Xiping, Dabin Liu, Siting Zhu, and Jianwei Liang, "Investigation of an intensifying-flux variable flux-leakage interior permanent magnet machine for wide speed range," CES Transactions on Electrical Machines and Systems, Vol. 6, No. 2, 207-215, Jun. 2022.
doi:10.30941/cestems.2022.00028        Google Scholar

20. Liu, Xiping, Siting Zhu, Dabin Liu, and Jianwei Liang, "Design and analysis of wide speed regulation of variable leakage flux reverse salient-pole motor," CES Transactions on Electrical Machines and Systems, Vol. 7, No. 3, 284-293, Sep. 2023.
doi:10.30941/cestems.2023.00031        Google Scholar

21. Du, Longxin, Xiping Liu, Jiesheng Fu, Jianwei Liang, and Chaozhi Huang, "Design and optimization of reverse salient permanent magnet synchronous motor based on controllable leakage flux," CES Transactions on Electrical Machines and Systems, Vol. 5, No. 2, 163-173, Jun. 2021.
doi:10.30941/cestems.2021.00020        Google Scholar

22. Liu, Fangjie, Xiaoyong Zhu, Wenye Wu, Li Quan, Zixuan Xiang, and Yizhou Hua, "Design and analysis of an interior permanent magnet synchronous machine with multiflux-barriers based on flux-intensifying effect," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, Apr. 2018.
doi:10.1109/tasc.2017.2781720        Google Scholar

23. Du, Zhentao S. and Thomas A. Lipo, "Cost-effective high torque density bi-magnet machines utilizing rare earth and ferrite permanent magnets," IEEE Transactions on Energy Conversion, Vol. 35, No. 3, 1577-1584, Sep. 2020.
doi:10.1109/tec.2020.2978256        Google Scholar

24. Wang, Ziyu, Xiaolin Wang, and Xucong Bao, "A PM dimensions design method for hybrid less rare-earth permanent magnet motors based on analytical approach," IEEE Transactions on Transportation Electrification, Vol. 11, No. 2, 6512-6524, Apr. 2025.
doi:10.1109/tte.2024.3510615        Google Scholar