1. Hester, J. G. and M. M. Tentzeris, "Inkjet-printed flexible mm-wave Van-Atta reflectarrays: A solution for ultralong-range dense multitag and multisensing chipless RFID implementations for IoT smart skins," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4763-4773.
doi:2016 Google Scholar
2. Paracha, K. N., S. K. A. Rahim, H. T. Chattha, S. S. Aljaafreh, and Y. C. Lo, "Low-cost printed flexible antenna by using an office printer for conformal applications," International Journal of Antennas and Propagation, Vol. 2018, 1-7, 2018. Google Scholar
3. Li, X., M. M. Honari, Y. Fu, A. Kumar, H. Saghlatoon, P. Mousavi, and H.-J. Chung, "Self-reinforcing graphene coatings on 3D printed elastomers for flexible radio frequency antennas and strain sensors," Flexible and Printed Electronics, Vol. 2, No. 3, 035001, 2017. Google Scholar
4. Cosker, M., L. Lizzi, F. Ferrero, R., Staraj, and J.-M. Ribero, "Realization of 3-D flexible antennas using liquid metal and additive printing technologies," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 971-974, 2016. Google Scholar
5. Abutarboush, H. F. and A. Shamim, "Based inkjet-printed tri-band U-slot monopole antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1234-1237, 2012. Google Scholar
6. Mansour, A., N. Shehata, B. Hamza, and M. Rizk, "Efficient design of flexible and low cost paper-based inkjet-printed antenna," International Journal of Antennas and Propagation, Vol. 2015, 2015. Google Scholar
7. Anagnostou, D. E., A. A. Gheethan, A. K. Amert, and K. W. Whites, "A direct-write printed antenna on paper-based organic substrate for flexible displays and WLAN applications," Journal of Display Technology, Vol. 6, No. 11, 558-564, 2010. Google Scholar
8. Hassan, A., S. Ali, G. Hassan, J. Bae, and C. H. Lee, "Inkjet-printed antenna on thin PET substrate for dual band Wi-Fi communications," Microsystem Technologies, Vol. 23, No. 8, 3701-3709, 2017. Google Scholar
9. Guo, X., Y. Hang, Z. Xie, C. Wu, L. Gao, and C. Liu, "Flexible and wearable 2.45 GHz CPW-fed antenna using inkjet-printing of silver nanoparticles on pet substrate," Microwave and Optical Technology Letters, Vol. 59, No. 1, 204-208, 2017. Google Scholar
10. Huang, C.-Y. and D.-Y. Lin, "CPW-fed bowtie slot antenna for ultra-wideband communications," Electronics Letters, Vol. 42, No. 19, 1073-1074, 2006. Google Scholar
11. Bhaskar, V. S., E. L. Tan, and L. K. H. Holden, "Design of wideband bowtie slot antenna using sectorially modified gielis curves," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2237-2240, 2018. Google Scholar
12. Mazaheri, M., N. Amani, and A. Jafargholi, "Wideband printed slot bowtie antenna using symmetric vias," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1301-1304, 2016. Google Scholar
13. Pierce, R. G., A. J. Blanchard, and R. M. Henderson, "Broadband planar modified aperture bowtie antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1432-1435, 2013. Google Scholar
14. Tsai, L.-C., "A triple-band bow-tie-shaped CPW-fed slot antenna for WLAN applications," Progress In Electromagnetics Research C, Vol. 47, 167-171, 2014. Google Scholar
15. Xu, L., L. Li, and W. Zhang, "Study and design of broadband bowtie slot antenna fed with asymmetric CPW," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 760-765, 2014. Google Scholar
16. Chen, Y.-L., C.-L. Ruan, and L. Peng, "A novel ultra-wideband bow-tie slot antenna in wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 1, 101-108, 2008. Google Scholar
17. Yoon, J. H. and Y. C. Lee, "Modified bowtie slot antenna for the 2.4/5.2/5.8 GHz WLAN bands with a rectangular tuning stub," Microwave and Optical Technology Letters, Vol. 53, No. 1, 126-130, 2011. Google Scholar
18. Dayo, Z. A., Q. Cao, P. Soothar, M. M. Lodro, and Y. Li, A Compact Coplanar Waveguide Feed Bowtie Slot Antenna for WIMAX, C and X Band Applications, 1-3, IEEE, 2019.
19. Yamamoto, M. and T. Nojima, Design of a Leaf-shaped Bowtie Slot Antenna Electromagnetically Fed by a Microstrip Line, 261-262, IEEE, 2014.
20. Sagnard, F. and F. Rejiba, "Wide band coplanar waveguide-fed bowtie slot antenna for a large range of ground penetrating radar applications," IET Microwaves, Antennas and Propagation, Vol. 5, No. 6, 734-739, 2011. Google Scholar
21. Sallam, M. O., S. M. Kandil, V. Volski, G. A. Vandenbosch, and E. A. Soliman, "Wideband CPW-fed flexible bowtie slot antenna for WLAN/WiMax systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, 2017. Google Scholar
22. Liu, H., S. Zhu, P. Wen, X. Xiao, W. Che, and X. Guan, "Flexible CPW-fed fishtail-shaped antenna for dual-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 770-773, 2014. Google Scholar
23. Sahoo, R. and D. Vakula, "Bow-tie-shaped wideband conformal antenna with wide-slot for GPS application," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 27, No. 1, 80-93, 2019. Google Scholar
24. Durgun, A. C., M. S. Reese, C. A. Balanis, C. R. Birtcher, D. R. Allee, and S. Venugopal, Book Flexible Bowtie Antennas with Reduced Metallization, 50-53, IEEE, 2011.
25. Farooqui, M. F. and A. Shamim, Dual Band Inkjet Printed Bowtie Slot Antenna on Leather, 3287-3290, IEEE, 2013.
26. Choudhary, E., S. Sharma, and P. Yadav, A Modified Wideband Bow-tie Antenna with DGS for Wireless Fidelity Range, 1-5, IEEE, 2018.
27. Salonen, P., J. Kim, and Y. Rahmat-Samii, Dual-band E-shaped Patch Wearable Textile Antenna, 466-469, IEEE, 2005.
28. Singh, N., A. K. Singh, and V. K. Singh, "Design and performance of wearable ultrawide band textile antenna for medical applications," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1553-1557, 2015. Google Scholar
29. Krykpayev, B., M. F. Farooqui, R. M. Bilal, M. Vaseem, and A. Shamim, "A wearable tracking device inkjet-printed on textile," Microelectronics Journal, Vol. 65, 40-48, 2017. Google Scholar
30. Mansour, A., M. Azab, and N. Shehata, Flexible Paper-based Wideband Antenna for Compact-size IoT Devices, 426-429, IEEE, 2017.
31. Zahran, S. R., Z. Hu, and M. A. Abdalla, A Flexible Circular Polarized Wide Band Slot Antenna for Indoor IoT Applications, 1163-1164, IEEE, 2017.
32. Lee, C.-H., S.-Y. Chen, and P. Hsu, Compact Modified Bowtie Slot Antenna Fed by CPW for Ultra-wideband Applications, 1-4, IEEE, 2009.
33. Qu, S.-W. and C.-L. Ruan, "Effect of round corners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006. Google Scholar
34. Saha, T. K., T. N. Knaus, A. Khosla, and P. K. Sekhar, "A CPW-fed flexible UWB antenna for IoT applications," Microsystem Technologies, 1-7, 2018. Google Scholar
35. Elobaid, H. A. E., S. K. A. Rahim, M. Himdi, X. Castel, and M. A. Kasgari, "A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1333-1336, 2016. Google Scholar
36. Jilani, S. F. and A. Alomainy, Planar Millimeter-wave Antenna on Low-cost Flexible PET Substrate for 5G Applications, 1-3, IEEE, 2016.
37. Lee, C. M., Y. Kim, Y. Kim, I. K. Kim, and C. W. Jung, "A flexible and transparent antenna on a polyamide substrate for laptop computers," Microwave and Optical Technology Letters, Vol. 57, No. 5, 1038-1042, 2015. Google Scholar
38. Riheen, M. A., T. K. Saha, and P. K. Sekhar, "Inkjet printing on PET substrate," Journal of the Electrochemical Society, Vol. 166, No. 9, B3036-B3039, 2019. Google Scholar
39. Saha, T. K., C. Goodbody, T. Karacolak, and P. K. Sekhar, "A compact monopole antenna for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 1, 182-186, 2019. Google Scholar
40. De Cos Gomez, M., H. F. Alvarez, C. G. Gonzalez, B. P. Valcarce, J. Olenick, and F. Las-Heras, Ultra-thin Compact Flexible Antenna for IoT Applications, 1-4, IEEE, 2019.
41. Katehi, P. and N. Alexopoulos, "On the effect of substrate thickness and permittivity on printed circuit dipole properties," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 1, 34-39, 1983. Google Scholar
42. Thajudeen, C., A. Hoorfar, F. Ahmad, and T. Dogaru, "Measured complex permittivity of walls with different hydration levels and the effect on power estimation of TWRI target returns," Progress In Electromagnetics Research B, Vol. 30, 177-199, 2011. Google Scholar
43. Common, L. T., Propagation losses through common building materials 2.4 GHz vs 5 GHz, E10589, Magis Network, Inc., 2002.