Vol. 76
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-12-07
Cross Polarized 2×2 UWB-MIMO Antenna System for 5G Wireless Applications
By
Progress In Electromagnetics Research M, Vol. 76, 157-166, 2018
Abstract
A novel cross polarized compact antenna system is proposed for Ultra Wide Band communications. It also covers the sub-6 GHz band for initial 5G launch. The overall antenna system is a distinctive combination of Multiple Input Multiple Output (MIMO) antenna system covering radio frequency (RF) band starting from 2 GHz to 12 GHz. This MIMO system consists of two F-shaped monopoles with slotted fractured ground planes. The two antennas are fabricated back to back with 90 degree difference. The overall volume of the MIMO antenna system is 14 mm × 14 mm × 0.25 mm. Due to its very compact design, it is suitable for mobile phones and other hand-held devices. The peak measured gain has been achieved as 4.8 dB, and the measured far field patterns are nearly isotropic. Envelope Correlation Coefficient (ECC) and Gain Diversity are presented for the proposed MIMO antenna system.
Citation
Haitham Alsaif, Muhammad Usman, Muhammad Tajammal Chughtai, and Jamal Nasir, "Cross Polarized 2×2 UWB-MIMO Antenna System for 5G Wireless Applications," Progress In Electromagnetics Research M, Vol. 76, 157-166, 2018.
doi:10.2528/PIERM18101103
References

1. Maccartney, G. R., T. S. Rappaport, S. Sun, and S. Deng, "Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks," IEEE Access, Vol. 3, 2388-2424, 2015, doi: 10.1109/ACCESS.2015.2486778.

2. Ndip, I., T. H. Le, O. Schwanitz, and K.-D. Lang, "A comparative analysis of 5G mmWave antenna arrays on different substrate technologies," 22nd International Microwave and Radar Conference (MIKON) 2018, 222-225, 2018.

3. Mao, C.-X., S. Gao, and Y. Wang, "Broadband high-gain beam-scanning antenna array for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 9, 4864-4868, 2017.

4. AL-Saif, H., M. Usman, M. T. Chughtai, and J. Nasir, "Compact ultra-wide band MIMO antenna system for lower 5G bands," Wireless Communications and Mobile Computing, Vol. 2018, Article ID 2396873, 6 pages, 2018, https://doi.org/10.1155/2018/2396873.

5. Matinmikko, M., M. Latva-aho, P. Ahokangas, and V. Seppänen, "On regulations for 5G: Micro licensing for locally operated networks," Telecommunications Policy, Vol. 42, No. 8, 622-635, 2018, ISSN 0308-5961, https://doi.org/10.1016/j.telpol.2017.09.004.

6. Marsden, R. and H.-M. Ihle, "Mechanisms to incentivise shared-use of spectrum," Telecommunications Policy, Vol. 42, No. 4, 315-322, 2018, ISSN 0308-5961, https://doi.org/10.1016/j.telpol.2017.07.001.

7. Dighriri, M., G. M. Lee, and T. Baker, "Measurement and classification of smart systems data traffic over 5G mobile networks," Technology for Smart Futures, M. Dastbaz, H. Arabnia, and B. Akhgar (eds.), Publisher Springer, Cham, 2018, ISBN 978-3-319-60136-6, https://doi.org/10.1007/978-3-319-60137-3_9.

8. Li, S., D. Xu, and S. Zhao, "5G internet of things: A survey," Journal of Industrial Information Integration, Vol. 10, 1-9, 2018, ISSN 2452-414X, https://doi.org/10.1016/j.jii.2018.01.005.

9. Wu, Y., K. Ding, B. Zhang, J. Li, D. Wu, and K. Wang, "Design of a compact UWB MIMO antenna without decoupling structure," International Journal of Antennas and Propagation, Vol. 2018, Article ID 9685029, 7 pages, 2018, https://doi.org/10.1155/2018/9685029.

10. Wang, F., Z. Duan, S. Li, Z.-L. Wang, and Y.-B. Gong, "Compact UWB MIMO antenna with metamaterial-inspired isolator," Progress In Electromagnetics Research C, Vol. 84, 61-74, 2018.

11. Wu, L., Y. Xia, X. Cao, and Z. Xu, "A miniaturized UWB-MIMO antenna with quadruple band-notched characteristics," International Journal of Microwave and Wireless Technologies, 1-8, 2018, doi:10.1017/S1759078718000508.

12. Usman, M., et al. "New compact dual polarised dipole antenna for MIMO communications," 2010 International ITG Workshop on Smart Antennas (WSA), 326-330, Bremen, 2010, doi: 10.1109/WSA.2010.5456429.

13. Malviya, L., R. Panigrahi, and M. Kartikeyan, "MIMO antennas with diversity and mutual coupling reduction techniques: A review," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 8, 1763-1780, 2017, doi:10.1017/S1759078717000538.

14. Usman, M., R. A. Abd-Alhameed, and P. S. Excell, "Design considerations of MIMO antennas for mobile phones," PIERS Online, Vol. 4, No. 1, 121-125, 2008.

15. Hong, J.-K., "Performance analysis of dual-polarized massive MIMO system with human-care IoT devices for cellular networks," Journal of Sensors, Vol. 2018, Article ID 3604520, 8 pages, 2018, https://doi.org/10.1155/2018/3604520.

16. Jo, O., J. Kim, J. Yoon, D. Choi, and W. Hong, "Exploitation of dual-polarization diversity for 5G millimeter-wave MIMO beam-forming systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6646-6655, Dec. 2017, doi: 10.1109/TAP.2017.2761979.

17. Gao, C., X. Q. Li, W. J. Lu, and K. L. Wong, "Conceptual design and implementation of a four-element MIMO antenna system packaged within a metallic handset," Microw. Opt. Technol. Lett., Vol. 60, 436-444, 2018, https://doi.org/10.1002/mop.30978.

18. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band," Microw. Opt. Technol. Lett., Vol. 56, 1323-1327, 2014, doi:10.1002/mop.28316.

19. Li, Y., C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, Vol. 6, 344-354, 2018, doi: 10.1109/ACCESS.2017.2763161.

20. Li, M., et al. "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3820-3830, Sep. 2016, doi: 10.1109/TAP.2016.2583501.

21. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Transactions on Antennas and Propagation, Vol. 58, 27-34, 2010.

22. Chandel, R., A. K. Gautam, and K. Rambabu, "Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1677-1684, Apr. 2018, doi: 10.1109/TAP.2018.2803134.

23. "CST: Microwave Studio based on the finite integration technique,".

24. Zhang, S., K. Zhao, Z. Ying, and S. He, "Adaptive quad-element multi-wideband antenna array for user-effective LTE MIMO mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4275-4283, Aug. 2013, doi: 10.1109/TAP.2013.2260714.

25. Rasilainen, K., A. Lehtovuori, A. Boussada, and V. Viikari, "Carrier aggregation compatible MIMO antenna for LTE handset," Progress In Electromagnetics Research C, Vol. 78, 1-10, 2017.

26. Vaughan, R. G. and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, Vol. 36, 149-172, 1987.

27. Nasir, J., M. H. Jamaluddin, M. Khalily, M. R. Kamarudin, I. Ullah, and R. Selvaraju, "A reduced size dual port MIMO DRA with high isolation for 4G applications," International Journal of RF and Microwave Computer Aided Engineering, Vol. 25, 495-501, 2015.

28. Lee, W. C., Mobile Communications Engineering, McGraw-Hill Professional, 1982.

29. Rosengren, K. and P.-S. Kildal, "Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber," IEE Proceedings-Microwaves, Antennas and Propagation, Vol. 152, 7-16, 2005.