Vol. 75
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-07-05
A Novel Miniaturized Frequency Selective Surface with Very Stable Performance
By
Progress In Electromagnetics Research C, Vol. 75, 131-138, 2017
Abstract
A miniaturized frequency selective surface (MFSS) that has very stable performance is designed based on the stepped-impedance element (SIE) structure. Significant couplings can be introduced by overlapping one metallic layer above the SIE structure. The large overlapping areas between the two metallic layers is beneficial to further miniaturizing the element size. Therefore, the physical size of the MFSS unit cell can be reduced to 0.054λX0.054λ. In addition, the MFSS is proved to excellent stability towards incident angles (up to 75o) and polarizations. A careful equivalent circuit model is presented to explain the physical principle of the proposed design. Finally, a prototype is fabricated and tested, and the simulation results are in agreement with the experimental observations.
Citation
Huangyan Li, Qunsheng Cao, and Yi Wang, "A Novel Miniaturized Frequency Selective Surface with Very Stable Performance," Progress In Electromagnetics Research C, Vol. 75, 131-138, 2017.
doi:10.2528/PIERC17051603
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

2. Liu, T., X. Cao, J. Gao, and Q. Zheng, "RCS reduction of waveguide slot antenna with metamaterial absorber," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1479-1484, 2013.
doi:10.1109/TAP.2012.2231922

3. Yoo, M. and S. Lim, "Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2652-2658, 2014.
doi:10.1109/TAP.2014.2308511

4. Ji, H. K., H. J. Chun, I. P. Hong, Y. J. Kim, and B. P. Yong, "Analysis of FSS radomes based on physical optics method and ray tracing technique," IEEE Antennas Wireless Propag. Lett., Vol. 13, No. 1933, 868-871, 2014.

5. Shang, Y., Z. Shen, and S. Xiao, "Frequency-selective rasorber based on square-loop and crossdipole arrays," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5581-5589, 2014.
doi:10.1109/TAP.2014.2357427

6. Zhang, L., G. Yang, Q. Wu, and J. Hua, "A novel active frequency selective surface with wideband tuning range for EMC purpose," IEEE Trans. Magn., Vol. 48, No. 11, 4534-4537, 2012.
doi:10.1109/TMAG.2012.2202099

7. Huang, F., J. C. Batchelor, and E. A. Parker, "Interwoven convoluted element frequency selective surfaces with wide bandwidths," Electron. Lett., Vol. 42, No. 14, 788-790, 2006.
doi:10.1049/el:20061589

8. Li, H. and Q. Cao, "Design and analysis of a controllable miniaturized triband frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 52, 105-112, 2015.

9. Sanz-Izquierdo, B., E. A. Parker, J. B. Robertson, et al. "Singly and dual polarized convoluted frequency selective structures," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 690-696, 2010.
doi:10.1109/TAP.2009.2039321

10. Liu, H. L., K. L. Ford, and R. J. Langley, "Miniaturised bandpass frequency selective surface with lumped components," Electron. Lett., Vol. 44, No. 18, 1054-1055, 2008.
doi:10.1049/el:20081763

11. Deng, F., X. Yi, and W. Wu, "Design and performance of a double-layer miniaturized-element frequency selective surface," IEEE Antennas Wireless Propag. Lett., Vol. 12, 721-724, 2013.
doi:10.1109/LAWP.2013.2265095

12. Hussein, M., J. Zhou, Y. Huang, and A. P. Sohrab, "Frequency selective surface with simple configuration stepped-impedance elements," Proc. Eur. Conf. Antennas Propag., Davos, CH, Apr. 10–15, 2016.

13. Smythe, W. R., Static and Dynamic Electricity, McGraw-Hill, 1968.