Vol. 90
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-01-30
Design of Compact, Wideband Dual-Polarized Multi-Dipole Antenna for 2G/3G/LTE Base Station Applications
By
Progress In Electromagnetics Research C, Vol. 90, 41-49, 2019
Abstract
In this paper, awideband dual-polarized multi-dipole antennawith a compact radiator size is developedfor 2G/3G/LTE base station applications. The original antenna is composed of a pair of crossed square loop dipoles (SLDs) and two big Y-shaped feeding lines. Thanks to the adopted capacitive coupling, a wide impedance bandwidth is obtained with dual resonant modesin the low and middle frequency bands. Owing to the circular chamfersin thecrossed SLDs, the dual resonant modes are away from each other. Thus, a compact radiator size is implemented, and it is about 0.382λ0×0.382λ00 is the wavelength at center frequency of operation). To further widen the operating bandwidth of the antenna, a pair of crossed rectangular loop dipoles (RLDs) and four small Y-shaped feeding lines are introduced to generate a new resonant mode at high frequency. As a result, the impedance bandwidth of the proposed antenna is enhanced.Based on the optimized dimensions of the simulated antenna model, a prototype is developed, fabricated and tested. Measured results show that the proposed antenna has a relative impedance bandwidth of 53.9% from 1.68 to 2.92 GHz at two ports for VSWR<1.5. Within the operating impedance bandwidth, the measured port-to-port isolation is better than 30 dB. In addition, a stable gain of 8.2±0.5 dBi and a stable radiation pattern with 66°±4° half-power beamwidth (HPBW) in the horizontal plane are achieved across the whole bandwidth of operationfor dual polarizations. Finally, the proposed antenna is suitable for base station applications.
Citation
Zhaoyang Tang, Yapeng Li, Zhipeng Zhao, and Ying-Zeng Yin, "Design of Compact, Wideband Dual-Polarized Multi-Dipole Antenna for 2G/3G/LTE Base Station Applications," Progress In Electromagnetics Research C, Vol. 90, 41-49, 2019.
doi:10.2528/PIERC18121902
References

1. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, Hoboken, NJ, USA, 2002.
doi:10.1002/0471221112

2. Cui, Y. H., R. L. Li, and H. Z. Fu, "A broadband dual-polarized planar antenna for 2G/3G/LTE base stations," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4836-4840, 2014.
doi:10.1109/TAP.2014.2330596

3. Chu, Q. X., D. L. Wen, and Y. Luo, "A broadband ±45 dual-polarized antenna with Y-shaped feeding lines," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 483-490, 2015.
doi:10.1109/TAP.2014.2381238

4. Wu, J. J., W. Yu, and J. Chen, "A broadband dual-polarized arm-overlapped dipole antenna for base station applications," Progress In Electromagnetics Research C, Vol. 89, 51-59, 2019.
doi:10.2528/PIERC18110105

5. He, H., Y. Liu, and S. X. Gong, "A broadband dual-polarized base station antenna with antiinterference capability," IEEE Antennas Wireless Propagation Letters, Vol. 16, 613-616, 2017.

6. He, H., Y. Liu, and S. X. Gong, "A broadband dual-polarized base station antenna with sturdy construction," IEEE Antennas Wireless Propagation Letters, Vol. 16, 665-668, 2017.

7. Gou, Y. S., S. W. Yang, J. X. Li, and Z. P. Nie, "A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4392-4395, 2014.
doi:10.1109/TAP.2014.2327653

8. Lai, H. W. and K. M. Luk, "Dual polarized patch antenna fed by meandering probes," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2625-2627, 2007.
doi:10.1109/TAP.2007.904158

9. Wang, Y. and Z. W. Du, "Dual-polarized slot-coupled microstrip antenna array with stable active element pattern," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, 4239-4244, 2015.
doi:10.1109/TAP.2015.2452958

10. Feng, B. T., W. X. An, S. X. Yin, L. Deng, and S. F. Li, "Dual-wideband complementary antenna with a dual-layer cross-ME-dipole structure for 2G/3G/LTE/WLAN applications," IEEE Antennas Wireless Propagation Letters, Vol. 14, 626-629, 2015.
doi:10.1109/LAWP.2014.2375338

11. Xue, Q., S. W. Liao, and J. H. Xu, "A differentially-driven dual-polarized magneto-electric dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 425-430, 2013.
doi:10.1109/TAP.2012.2214998

12. Wu, B. Q. and K. M. Luk, "A broadband dual-polarized magneto-electric dipole antenna with simple feeds," IEEE Antennas Wireless Propagation Letters, Vol. 8, 60-63, 2009.

13. Luo, Y. and Q. X. Chu, "Oriental crown-shaped differentially fed dual-polarized multidipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4678-4685, 2015.
doi:10.1109/TAP.2015.2478909

14. Zhou, C. F., H. Wong, and L. K. Yeung, "A wideband dual-polarized inductor-end slot antenna with stable beamwidth," IEEE Antennas Wireless Propagation Letters, Vol. 17, No. 4, 608-612, 2018.
doi:10.1109/LAWP.2018.2805827

15. Morabito, A. F., R. Palmeri, and T. Isernia, "A compressive-sensing-inspired procedure for array antenna diagnostics by a small number of phaseless measurements," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3260-3265, 2016.
doi:10.1109/TAP.2016.2562669