Vol. 111
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-03
Nonuniform Circular Array Synthesis for Low Side Lobe Level Using Dynamic Invasive Weeds Optimization
By
Progress In Electromagnetics Research C, Vol. 111, 147-162, 2021
Abstract
The use of invasive weeds optimization in the synthesis of antenna arrays has become popular in the last few years. This optimization method is robust, simple and can be easily improved. Like other stochastic algorithms, IWO suffers from premature convergence and other drawbacks. To overcome these problems, a dynamic IWO is proposed and used for synthesizing two antenna array topologies (linear and circular array). This proposed method tries to achieve an optimal array pattern by acting on the amplitude excitation of elements in the non-uniform circular array and their positions on the array to obtain an array pattern with deep nulls in some directions of interferences and low side lobe level. For the linear array, the nulls control can be achieved by acting on the relative amplitude excitation of each element in the array for an optimal inter-element spacing. This proposed method improves the performance greatly and allows to achieve a maximum reduction in side lobe level in band Nulls with an acceptable dynamic range ratio (DRR). To show the performance of the proposed method, for each topology, our results are compared to other results of the literature.
Citation
Elhadi Kenane Fadila Benmeddour Farid Djahli , "Nonuniform Circular Array Synthesis for Low Side Lobe Level Using Dynamic Invasive Weeds Optimization," Progress In Electromagnetics Research C, Vol. 111, 147-162, 2021.
doi:10.2528/PIERC21020402
http://www.jpier.org/PIERC/pier.php?paper=21020402
References

1. Dib, N., "Design of planar concentric circular antenna arrays with reduced side lobe level using symbiotic organisms search," Neural Comput. Appl., Vol. 30, No. 12, 3859-3868, 2018.
doi:10.1007/s00521-017-2971-2

2. Rahman, S. U., Q. Cao, M. M. Ahmed, and H. Khalil, "Analysis of linear antenna array for minimum side lobe level, half power beamwidth, and nulls control using PSO," J. Microwaves, Optoelectron. Electromagn., Vol. 16, No. 2, 577-591, 2017.
doi:10.1590/2179-10742017v16i2913

3. Bai, J., Y. Liu, J. Cheng, P. You, and Q. Liu, "Shaped power pattern antenna array synthesis with reduction of dynamic range ratio," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2444-2447, Shanghai, China, Aug. 8–11, 2016.

4. Battaglia, G. M., G. G. Bellizzi, A. F. Morabito, G. Sorbello, and T. Isernia, "A general effective approach to the synthesis of shaped beams for arbitrary fixed-geometry arrays," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2404-2422, 2019.
doi:10.1080/09205071.2019.1683472

5. Buttazzoni, G., F. Babich, F. Vatta, and M. Comisso, "Geometrical synthesis of sparse antenna arrays using compressive sensing for 5G IoT applications," Sensors, Vol. 20, No. 350, 1-16, 2020.

6. Rocca, P., M. Donelli, G. Oliveri, F. Viani, and A. Massa, "Reconfigurable sum-difference pattern by means of parasitic elements for forward-looking monopulse radar," IET Radar, Sonar Navig., Vol. 7, No. 7, 747-754, 2013.
doi:10.1049/iet-rsn.2012.0300

7. Slowik, A. and H. Kwasnicka, "Evolutionary algorithms and their applications to engineering problems," Neural. Comput. Appl., Vol. 32, No. 16, 12363-12379, 2020.
doi:10.1007/s00521-020-04832-8

8. Singh, U. and M. Rattan, "Design of linear and circular antenna arrays using cuckoo optimization algorithm," Progress In Electromagnetics Research C, Vol. 46, 1-11, 2014.
doi:10.2528/PIERC13110902

9. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

10. Saxena, P. and A. Kothari, "Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm," Int. J. Antennas Propag., Vol. 2016, 1-11, 2016.
doi:10.1155/2016/1205970

11. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304

12. Donelli, M., T. Moriyama, and M. Manekiya, "A compact switched-beam planar antenna array for wireless sensors operating at Wi-Fi band," Progress In Electromagnetics Research C, Vol. 83, 137-145, 2018.
doi:10.2528/PIERC18012004

13. Liang, S., Z. Fang, G. Sun, Y. Liu, G. Qu, and Y. Zhang, "Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach," IEEE Access, Vol. 8, 37664-37683, 2020.
doi:10.1109/ACCESS.2020.2976127

14. Bulatsyk, O. O. and N. N. Voitovich, "Complex zeros of solutions to the synthesisproblem of irregular linear antenna array by amplitude radiation pattern," 2017 XXIInd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and AcousticWave Theory (DIPED), 14-19, 2017.

15. Shi, W., Y. Li, L. Zhao, and X. Liu, "Controllable sparse antenna array for adaptive beamforming," IEEE Access, Vol. 7, 6412-6423, 2019.
doi:10.1109/ACCESS.2018.2889877

16. Zeni, E., M. Donelli, A. Massa, G. Boato, and R. Azaro, "Design of a prefractal monopolar antenna for 3.4–3.6 GHz Wi-Max band portable devices," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 4, 116-119, 2006.

17. Mehrabian, A. R. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecol. Inform., Vol. 1, No. 4, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003

18. Goswami, B. and D. Mandal, "A genetic algorithm for the level control of nulls and side lobes in linear antenna arrays," J. King Saud Univ., Comp. & Info. Sci., Vol. 25, No. 2, 117-126, 2013.

19. Vescovo, R., "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1555-1566, 2008.
doi:10.1109/TAP.2008.923297

20. Basak, A., S. Pal, S. Das, and A. Abraham, "Circular antenna array synthesis with a differential invasive weed optimization algorithm," Tenth International Conference on Hybrid Intelligent Systems, IEEE Conference, 153-158, USA, 2010.

21. Panduro, M. A., A. L. Mendez, R. Dominguez, and G. Romero, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," Int. J. Electron. Commun. (AEU), Vol. 60, No. 10, 713-717, 2006.
doi:10.1016/j.aeue.2006.03.006

22. Mahto, S. K. and A. Choubey, "A novel hybrid IWO/WDO algorithm for nulling pattern synthesis of uniformly spaced linear and non-uniform circular array antenna," Int. J. Electron. Commun. (AEU), Vol. 70, No. 6, 750-756, 2016.
doi:10.1016/j.aeue.2016.02.013

23. Sharaqa, A. and N. I. Dib, "Circular antenna array synthesis using firefly algorithm," The International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 2, 139-146, 2013.
doi:10.1002/mmce.20721

24. Das, A., D. Mandal, and R. Kar, "An optimal circular antenna array design considering mutual coupling using heuristic approaches," The International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 11, 2020.
doi:10.1002/mmce.22391