Vol. 120

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-05-09

Wideband Diversity MIMO Antenna Design with Hexagonal Slots for 5G Smart Mobile Terminals

By Hatim S. Alhaqbani, Mohammed M. Bait-Suwailam, Maged A. Aldhaeebi, and Thamer S. Almoneef
Progress In Electromagnetics Research C, Vol. 120, 105-117, 2022
doi:10.2528/PIERC22031604

Abstract

In this paper, we propose a wideband polarization diversity multiple-input multiple-output (MIMO) antenna array for 5G smart mobile devices. The proposed MIMO antenna array consists of 8-ports dual-polarized L-shaped lines that highly excite radiating slots, where the elements are placed at four-corners of a compact mobile unit of size 75×150 mm2. The uniqueness of the proposed MIMO antenna structure comes from the deployment of octagon-shaped resonant slots within the metallic ground plane, i.e. the octagonal-slots are etched from the bottom (ground) layer of the main mobile board. Due to the unique slots in the ground plane, wideband impedance has been achieved (3.38-3.8 GHz at -6-dB threshold). The proposed smart phone 8×8 diversity MIMO antenna is designed to support the spectrum of commercial sub-6 GHz 5G communications and cover the frequency range of around 3.5 GHz band with high decoupling between antenna ports. The proposed array is designed, numerically simulated, fabricated and tested. Good agreement between simulated and measured results was achieved. The MIMO antenna has a satisfactory far-field performance along with very low envelope correlation coefficient (ECC) < 0.055, high diversity of more than 9.95, and very low specific absorption rate (< 1 W/Kg for a 10-g human tissue).

Citation


Hatim S. Alhaqbani, Mohammed M. Bait-Suwailam, Maged A. Aldhaeebi, and Thamer S. Almoneef, "Wideband Diversity MIMO Antenna Design with Hexagonal Slots for 5G Smart Mobile Terminals," Progress In Electromagnetics Research C, Vol. 120, 105-117, 2022.
doi:10.2528/PIERC22031604
http://www.jpier.org/PIERC/pier.php?paper=22031604

References


    1. Nadeem, Q.-U.-A., et al., "Design of 5G full dimension massive MIMO systems," IEEE Transactions on Communications, Vol. 66, No. 2, 726-740, 2018.
    doi:

    504 Gateway Time-out


    2. Yang, H. and Y. Quek, Massive MIMO Meet Small Cell: Backhaul and Cooperation, SpringerBriefs in Electrical and Computer Engineering, Fort Lee, NJ, USA, 2017.
    doi:The server didn't respond in time.

    3. Osseiran, A., et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Communications Magazine, Vol. 52, No. 5, 26-35, 2014.
    doi:

    4. Elshirkasi, A. M., A. A. Al-Hadi, R. Khan, P. Akkaraekthalin, H. S. B. Abdelmula, A. M. Belghasem, A. H. Jebril, and P. J. Soh, "Numerical analysis of users' body effects on a fourteen-element dual-band 5G MIMO mobile terminal antenna," IEEE Access, 2021.

    5. Chang, L. and H. Wang, "Dual-band four-antenna module covering N78/N79 based on PIFA for 5G terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 69, No. 9, 5297-5304, 2021.

    6. Ye, Y., X. Zhao, and J. Wang, "Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, IEEE, 2022, doi: 10.1109/LAWP.2022.3152236.

    7. Khan, J., S. Ullah, U. Ali, F. A. Tahir, I. Peter, and L. Matekovits, "Design of a millimeter-wave mimo antenna array for 5G communication terminals," Sensors, Vol. 22, No. 7, 2768, 2022.

    8. Huang, H., W. Jiang, T. Zhang, Y. Zhu, B. Pang, and W. Hu, "Shared radiator based high-isolated tri-port mobile terminal antenna group design," International Journal of RF and Microwave Computer-Aided Engineering, e23177, 2022.

    9. Abdullah, M., A. Altaf, M. R. Anjum, Z. A. Arain, A. A. Jamali, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Future smartphone: MIMO antenna system for 5G mobile terminals," IEEE Access, Vol. 9, 91593-91603, 2021.

    10. Hassan, N. and X. Fernando, "Massive MIMO wireless networks: An overview," Electronics, Vol. 6, No. 3, 63, 2017.

    11. Pozar, D., "Analysis of finite phased arrays of printed dipoles," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 10, 1045-1053, 1985.

    12. Sharawi, M. S., "Printed multi-band mimo antenna systems and their performance metrics [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013.

    13. Mihaylov, G. Y., T. B. Iliev, T. D. Bikov, E. P. Ivanova, I. S. Stoyanov, V. P. Keseev, and A. R. Dinov, "Test cases and challenges for mobile network evolution from LTE to 5G," 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 0449-0452, 2018.

    14. Bait-Suwailam, M. M., O. Siddiqui, and O. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.

    15. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, 2017.

    16. Al Abbas, E., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019.

    17. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark- n antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, 2019.

    18. Cihangir, A., F. Ferrero, G. Jacquemod, P. Brachat, and C. Luxey, "Neutralized coupling elements for MIMO operation in 4G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 141-144, 2014.

    19. Wang, Y. and Z. Du, "A printed dual-antenna system operating in the GSM1800/GSM1900/UMTS/LTE2300/LTE2500/2.4-GHz WLAN bands for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 233-236, 2014.

    20. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, 2014.

    21. Al-Hadi, A., J. Ilvonen, R. Valkonen, and V. Viikan, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band," Microwave and Optical Technology Letters, Vol. 56, 1323-1327, 2014.

    22. Liu, Y., Y. Lu, Y. Zhang, and S.-X. Gong, "MIMO antenna array for 5G smartphone applications," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2019.

    23. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1323-1327, 2014.

    24. Parchin, N. O., Y. I. Al-Yasir, J. M. Noras, and R. A. Abd-Alhameed, "Dual-polarized mimo antenna array design using miniaturized self-complementary structures for 5G smartphone applications," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Krakow, Poland, 2019.

    25. Wong, K.-L., J.-Y. Lu, L.-Y. Chen, W.-Y. Li, and Y.-L. Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 58, No. 1, 174-181, 2016.

    26. Chen, Q., et al., "Single ring slot-based antennas for metal-rimmed 4G/5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1476-1487, 2018.

    27. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications," Progress In Electromagnetics Research M, Vol. 67, 197-207, 2018.

    28. Parchin, N. O., Y. Al-Yasir, A. M. Abdulkhaleq, I. Elfergani, A. Rayit, J. M. Noras, J. Rodriguez, and R. A. Abd-Alhameed, "Frequency reconfigurable antenna array for mm-Wave 5G mobile handsets," Proceedings of the 9th International Conference on Broadband Communications, Networks, and Systems, 438-445, Springer, Faro, Portugal, 2018.

    29. Bjornson, E., L. van der Perre, S. Buzzi, and E. G. Larsson, "Massive MIMO in sub-6 GHz and mmwave: Physical, practical, and use-case differences," IEEE Wireless Communications, Vol. 26, No. 2, 100-108, 2019.

    30. Al-Yasir, Y. I., A. S. Abdullah, N. Ojaroudi Parchin, R. A. Abd-Alhameed, and J. M. Noras, "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, No. 11, 293, 2018.

    31. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 271-279, 2017.

    32. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003.

    33. Chang, L., Y. Yu, K. Wei, and H. Wang, "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5212-5220, 2019.

    34. Abdullah, M., Y.-L. Ban, K. Kang, M.-Y. Li, and M. Amin, "Eight-element antenna array at 3.5 GHz for MIMO wireless application," Progress In Electromagnetics Research C, Vol. 78, 209-216, 2017.

    35. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.

    36. Li, M.-Y., Y.-L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2017.

    37. Xu, S., M. Zhang, H. Wen, and J. Wang, "Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium," Scienti c Reports, Vol. 7, 12162, 2017.

    38. Abdullah, M., S. H. Kiani, L. F. Abdulrazak, A. Iqbal, M. Bashir, S. Khan, and S. Kim, "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, No. 1090, 1-16, 2019.

    39. Alja'afreh, S. S., B. Altarawneh, M. H. Alshamaileh, E. R. Almajali, R. Hussain, M. S. Sharawi, L. Xing, and Q. Xu, "Ten antenna array using a small footprint capacitive-coupled-shorted loop antenna for 3.5 GHz 5G smartphone applications," IEEE Access, Vol. 9, 33796-33810, 2021.