Vol. 120
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-05-09
Wideband Diversity MIMO Antenna Design with Hexagonal Slots for 5G Smart Mobile Terminals
By
Progress In Electromagnetics Research C, Vol. 120, 105-117, 2022
Abstract
In this paper, we propose a wideband polarization diversity multiple-input multiple-output (MIMO) antenna array for 5G smart mobile devices. The proposed MIMO antenna array consists of 8-ports dual-polarized L-shaped lines that highly excite radiating slots, where the elements are placed at four-corners of a compact mobile unit of size 75×150 mm2. The uniqueness of the proposed MIMO antenna structure comes from the deployment of octagon-shaped resonant slots within the metallic ground plane, i.e. the octagonal-slots are etched from the bottom (ground) layer of the main mobile board. Due to the unique slots in the ground plane, wideband impedance has been achieved (3.38-3.8 GHz at -6-dB threshold). The proposed smart phone 8×8 diversity MIMO antenna is designed to support the spectrum of commercial sub-6 GHz 5G communications and cover the frequency range of around 3.5 GHz band with high decoupling between antenna ports. The proposed array is designed, numerically simulated, fabricated and tested. Good agreement between simulated and measured results was achieved. The MIMO antenna has a satisfactory far-field performance along with very low envelope correlation coefficient (ECC) < 0.055, high diversity of more than 9.95, and very low specific absorption rate (< 1 W/Kg for a 10-g human tissue).
Citation
Hatim S. Alhaqbani, Mohammed M. Bait-Suwailam, Maged A. Aldhaeebi, and Thamer S. Almoneef, "Wideband Diversity MIMO Antenna Design with Hexagonal Slots for 5G Smart Mobile Terminals," Progress In Electromagnetics Research C, Vol. 120, 105-117, 2022.
doi:10.2528/PIERC22031604
References

1. Nadeem, Q.-U.-A., A. Kammoun, M. Debbah, et al. "Design of 5G full dimension massive MIMO systems," IEEE Transactions on Communications, Vol. 66, No. 2, 726-740, 2018.
doi:

504 Gateway Time-out

       Google Scholar

2. Yang, H. and Y. Quek, Massive MIMO Meet Small Cell: Backhaul and Cooperation, SpringerBriefs in Electrical and Computer Engineering, Fort Lee, NJ, USA, 2017.
doi:The server didn't respond in time.

3. Osseiran, A., F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, et al. "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Communications Magazine, Vol. 52, No. 5, 26-35, 2014.
doi:        Google Scholar

4. Elshirkasi, A. M., A. A. Al-Hadi, R. Khan, P. Akkaraekthalin, H. S. B. Abdelmula, A. M. Belghasem, A. H. Jebril, and P. J. Soh, "Numerical analysis of users' body effects on a fourteen-element dual-band 5G MIMO mobile terminal antenna," IEEE Access, 2021.        Google Scholar

5. Chang, L. and H. Wang, "Dual-band four-antenna module covering N78/N79 based on PIFA for 5G terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 69, No. 9, 5297-5304, 2021.        Google Scholar

6. Ye, Y., X. Zhao, and J. Wang, "Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, IEEE, 2022, doi: 10.1109/LAWP.2022.3152236.        Google Scholar

7. Khan, J., S. Ullah, U. Ali, F. A. Tahir, I. Peter, and L. Matekovits, "Design of a millimeter-wave mimo antenna array for 5G communication terminals," Sensors, Vol. 22, No. 7, 2768, 2022.        Google Scholar

8. Huang, H., W. Jiang, T. Zhang, Y. Zhu, B. Pang, and W. Hu, "Shared radiator based high-isolated tri-port mobile terminal antenna group design," International Journal of RF and Microwave Computer-Aided Engineering, e23177, 2022.        Google Scholar

9. Abdullah, M., A. Altaf, M. R. Anjum, Z. A. Arain, A. A. Jamali, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Future smartphone: MIMO antenna system for 5G mobile terminals," IEEE Access, Vol. 9, 91593-91603, 2021.        Google Scholar

10. Hassan, N. and X. Fernando, "Massive MIMO wireless networks: An overview," Electronics, Vol. 6, No. 3, 63, 2017.        Google Scholar

11. Pozar, D., "Analysis of finite phased arrays of printed dipoles," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 10, 1045-1053, 1985.        Google Scholar

12. Sharawi, M. S., "Printed multi-band mimo antenna systems and their performance metrics [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013.        Google Scholar

13. Mihaylov, G. Y., T. B. Iliev, T. D. Bikov, E. P. Ivanova, I. S. Stoyanov, V. P. Keseev, and A. R. Dinov, "Test cases and challenges for mobile network evolution from LTE to 5G," 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 0449-0452, 2018.        Google Scholar

14. Bait-Suwailam, M. M., O. Siddiqui, and O. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.        Google Scholar

15. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, 2017.        Google Scholar

16. Al Abbas, E., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019.        Google Scholar

17. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark- n antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, 2019.        Google Scholar

18. Cihangir, A., F. Ferrero, G. Jacquemod, P. Brachat, and C. Luxey, "Neutralized coupling elements for MIMO operation in 4G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 141-144, 2014.        Google Scholar

19. Wang, Y. and Z. Du, "A printed dual-antenna system operating in the GSM1800/GSM1900/UMTS/LTE2300/LTE2500/2.4-GHz WLAN bands for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 233-236, 2014.        Google Scholar

20. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, 2014.        Google Scholar

21. Al-Hadi, A., J. Ilvonen, R. Valkonen, and V. Viikan, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band," Microwave and Optical Technology Letters, Vol. 56, 1323-1327, 2014.        Google Scholar

22. Liu, Y., Y. Lu, Y. Zhang, and S.-X. Gong, "MIMO antenna array for 5G smartphone applications," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2019.        Google Scholar

23. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1323-1327, 2014.        Google Scholar

24. Parchin, N. O., Y. I. Al-Yasir, J. M. Noras, and R. A. Abd-Alhameed, "Dual-polarized mimo antenna array design using miniaturized self-complementary structures for 5G smartphone applications," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Krakow, Poland, 2019.        Google Scholar

25. Wong, K.-L., J.-Y. Lu, L.-Y. Chen, W.-Y. Li, and Y.-L. Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 58, No. 1, 174-181, 2016.        Google Scholar

26. Chen, Q., H. Lin, J. Wang, L. Ge, Y. Li, T. Pei, et al. "Single ring slot-based antennas for metal-rimmed 4G/5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1476-1487, 2018.        Google Scholar

27. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications," Progress In Electromagnetics Research M, Vol. 67, 197-207, 2018.        Google Scholar

28. Parchin, N. O., Y. Al-Yasir, A. M. Abdulkhaleq, I. Elfergani, A. Rayit, J. M. Noras, J. Rodriguez, and R. A. Abd-Alhameed, "Frequency reconfigurable antenna array for mm-Wave 5G mobile handsets," Proceedings of the 9th International Conference on Broadband Communications, Networks, and Systems, 438-445, Springer, Faro, Portugal, 2018.        Google Scholar

29. Bjornson, E., L. van der Perre, S. Buzzi, and E. G. Larsson, "Massive MIMO in sub-6 GHz and mmwave: Physical, practical, and use-case differences," IEEE Wireless Communications, Vol. 26, No. 2, 100-108, 2019.        Google Scholar

30. Al-Yasir, Y. I., A. S. Abdullah, N. Ojaroudi Parchin, R. A. Abd-Alhameed, and J. M. Noras, "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, No. 11, 293, 2018.        Google Scholar

31. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 271-279, 2017.        Google Scholar

32. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003.        Google Scholar

33. Chang, L., Y. Yu, K. Wei, and H. Wang, "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5212-5220, 2019.        Google Scholar

34. Abdullah, M., Y.-L. Ban, K. Kang, M.-Y. Li, and M. Amin, "Eight-element antenna array at 3.5 GHz for MIMO wireless application," Progress In Electromagnetics Research C, Vol. 78, 209-216, 2017.        Google Scholar

35. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.        Google Scholar

36. Li, M.-Y., Y.-L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2017.        Google Scholar

37. Xu, S., M. Zhang, H. Wen, and J. Wang, "Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium," Scienti c Reports, Vol. 7, 12162, 2017.        Google Scholar

38. Abdullah, M., S. H. Kiani, L. F. Abdulrazak, A. Iqbal, M. Bashir, S. Khan, and S. Kim, "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, No. 1090, 1-16, 2019.        Google Scholar

39. Alja'afreh, S. S., B. Altarawneh, M. H. Alshamaileh, E. R. Almajali, R. Hussain, M. S. Sharawi, L. Xing, and Q. Xu, "Ten antenna array using a small footprint capacitive-coupled-shorted loop antenna for 3.5 GHz 5G smartphone applications," IEEE Access, Vol. 9, 33796-33810, 2021.        Google Scholar