1. Nadeem, Q.-U.-A., A. Kammoun, M. Debbah, et al. "Design of 5G full dimension massive MIMO systems," IEEE Transactions on Communications, Vol. 66, No. 2, 726-740, 2018.
doi:504 Gateway Time-out
Google Scholar
2. Yang, H. and Y. Quek, Massive MIMO Meet Small Cell: Backhaul and Cooperation, SpringerBriefs in Electrical and Computer Engineering, Fort Lee, NJ, USA, 2017.
doi:The server didn't respond in time.
3. Osseiran, A., F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, et al. "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Communications Magazine, Vol. 52, No. 5, 26-35, 2014.
doi: Google Scholar
4. Elshirkasi, A. M., A. A. Al-Hadi, R. Khan, P. Akkaraekthalin, H. S. B. Abdelmula, A. M. Belghasem, A. H. Jebril, and P. J. Soh, "Numerical analysis of users' body effects on a fourteen-element dual-band 5G MIMO mobile terminal antenna," IEEE Access, 2021. Google Scholar
5. Chang, L. and H. Wang, "Dual-band four-antenna module covering N78/N79 based on PIFA for 5G terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 69, No. 9, 5297-5304, 2021. Google Scholar
6. Ye, Y., X. Zhao, and J. Wang, "Compact high-isolated MIMO antenna module with chip capacitive decoupler for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, IEEE, 2022, doi: 10.1109/LAWP.2022.3152236. Google Scholar
7. Khan, J., S. Ullah, U. Ali, F. A. Tahir, I. Peter, and L. Matekovits, "Design of a millimeter-wave mimo antenna array for 5G communication terminals," Sensors, Vol. 22, No. 7, 2768, 2022. Google Scholar
8. Huang, H., W. Jiang, T. Zhang, Y. Zhu, B. Pang, and W. Hu, "Shared radiator based high-isolated tri-port mobile terminal antenna group design," International Journal of RF and Microwave Computer-Aided Engineering, e23177, 2022. Google Scholar
9. Abdullah, M., A. Altaf, M. R. Anjum, Z. A. Arain, A. A. Jamali, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Future smartphone: MIMO antenna system for 5G mobile terminals," IEEE Access, Vol. 9, 91593-91603, 2021. Google Scholar
10. Hassan, N. and X. Fernando, "Massive MIMO wireless networks: An overview," Electronics, Vol. 6, No. 3, 63, 2017. Google Scholar
11. Pozar, D., "Analysis of finite phased arrays of printed dipoles," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 10, 1045-1053, 1985. Google Scholar
12. Sharawi, M. S., "Printed multi-band mimo antenna systems and their performance metrics [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013. Google Scholar
13. Mihaylov, G. Y., T. B. Iliev, T. D. Bikov, E. P. Ivanova, I. S. Stoyanov, V. P. Keseev, and A. R. Dinov, "Test cases and challenges for mobile network evolution from LTE to 5G," 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 0449-0452, 2018. Google Scholar
14. Bait-Suwailam, M. M., O. Siddiqui, and O. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010. Google Scholar
15. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, 2017. Google Scholar
16. Al Abbas, E., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019. Google Scholar
17. Liu, Y., Z. Ai, G. Liu, and Y. Jia, "An integrated shark-n antenna for MIMO-LTE, FM, and GPS applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1666-1670, 2019. Google Scholar
18. Cihangir, A., F. Ferrero, G. Jacquemod, P. Brachat, and C. Luxey, "Neutralized coupling elements for MIMO operation in 4G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 141-144, 2014. Google Scholar
19. Wang, Y. and Z. Du, "A printed dual-antenna system operating in the GSM1800/GSM1900/UMTS/LTE2300/LTE2500/2.4-GHz WLAN bands for mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 233-236, 2014. Google Scholar
20. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Communications Magazine, Vol. 52, No. 2, 186-195, 2014. Google Scholar
21. Al-Hadi, A., J. Ilvonen, R. Valkonen, and V. Viikan, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band," Microwave and Optical Technology Letters, Vol. 56, 1323-1327, 2014. Google Scholar
22. Liu, Y., Y. Lu, Y. Zhang, and S.-X. Gong, "MIMO antenna array for 5G smartphone applications," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, 2019. Google Scholar
23. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikari, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500MHz band," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1323-1327, 2014. Google Scholar
24. Parchin, N. O., Y. I. Al-Yasir, J. M. Noras, and R. A. Abd-Alhameed, "Dual-polarized mimo antenna array design using miniaturized self-complementary structures for 5G smartphone applications," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Krakow, Poland, 2019. Google Scholar
25. Wong, K.-L., J.-Y. Lu, L.-Y. Chen, W.-Y. Li, and Y.-L. Ban, "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 58, No. 1, 174-181, 2016. Google Scholar
26. Chen, Q., H. Lin, J. Wang, L. Ge, Y. Li, T. Pei, et al. "Single ring slot-based antennas for metal-rimmed 4G/5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1476-1487, 2018. Google Scholar
27. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications," Progress In Electromagnetics Research M, Vol. 67, 197-207, 2018. Google Scholar
28. Parchin, N. O., Y. Al-Yasir, A. M. Abdulkhaleq, I. Elfergani, A. Rayit, J. M. Noras, J. Rodriguez, and R. A. Abd-Alhameed, "Frequency reconfigurable antenna array for mm-Wave 5G mobile handsets," Proceedings of the 9th International Conference on Broadband Communications, Networks, and Systems, 438-445, Springer, Faro, Portugal, 2018. Google Scholar
29. Bjornson, E., L. van der Perre, S. Buzzi, and E. G. Larsson, "Massive MIMO in sub-6 GHz and mmwave: Physical, practical, and use-case differences," IEEE Wireless Communications, Vol. 26, No. 2, 100-108, 2019. Google Scholar
30. Al-Yasir, Y. I., A. S. Abdullah, N. Ojaroudi Parchin, R. A. Abd-Alhameed, and J. M. Noras, "A new polarization-reconfigurable antenna for 5G applications," Electronics, Vol. 7, No. 11, 293, 2018. Google Scholar
31. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microwaves, Antennas & Propagation, Vol. 11, No. 2, 271-279, 2017. Google Scholar
32. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003. Google Scholar
33. Chang, L., Y. Yu, K. Wei, and H. Wang, "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 8, 5212-5220, 2019. Google Scholar
34. Abdullah, M., Y.-L. Ban, K. Kang, M.-Y. Li, and M. Amin, "Eight-element antenna array at 3.5 GHz for MIMO wireless application," Progress In Electromagnetics Research C, Vol. 78, 209-216, 2017. Google Scholar
35. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019. Google Scholar
36. Li, M.-Y., Y.-L. Ban, Z.-Q. Xu, J. Guo, and Z.-F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2017. Google Scholar
37. Xu, S., M. Zhang, H. Wen, and J. Wang, "Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium," Scientic Reports, Vol. 7, 12162, 2017. Google Scholar
38. Abdullah, M., S. H. Kiani, L. F. Abdulrazak, A. Iqbal, M. Bashir, S. Khan, and S. Kim, "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, No. 1090, 1-16, 2019. Google Scholar
39. Alja'afreh, S. S., B. Altarawneh, M. H. Alshamaileh, E. R. Almajali, R. Hussain, M. S. Sharawi, L. Xing, and Q. Xu, "Ten antenna array using a small footprint capacitive-coupled-shorted loop antenna for 3.5 GHz 5G smartphone applications," IEEE Access, Vol. 9, 33796-33810, 2021. Google Scholar