Vol. 67
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-12
Design and Performance Comparison of Permanent Magnet Brushless Motors and Switched Reluctance Motors for Extended Temperature Applications
By
Progress In Electromagnetics Research M, Vol. 67, 137-146, 2018
Abstract
In-Service Inspection (ISI) plays a critical role in ensuring the safety and security of nuclear power plant and personnel. The limited access and high ambient temperature conditions impel the need for remote inspection techniques using semi automated vehicle. The electrical actuators driving the ISI robotic vehicle must satisfy the requirements of high operating temperature, high torque density,compact size and low weight.Currently, permanent magnet brushless motors are used due to its compact size and high eciency. However, due to risk of demagnetization at high temperature as well as due to depleting resources of rare earth material alternate topologies without using permanent magnets shall be considered. This paper investigates the performance of Permanent Magnet (PM) brushless motor and Switched Reluctance (SR) motors for high temperature applications. SR motor is designed as per fundamental design equations satisfying the application requirements. Electromagnetic performance isveri ed by Finite Element Analysis (FEA) and thermal performance is veri ed by lumped parameter thermal analysis. Finally the performance of SR motor is compared with PM motor in terms of torque, eciency, weight,cost and temperature rise.
Citation
Sree Ranjini K S, and Sankaravadivel Murugan, "Design and Performance Comparison of Permanent Magnet Brushless Motors and Switched Reluctance Motors for Extended Temperature Applications," Progress In Electromagnetics Research M, Vol. 67, 137-146, 2018.
doi:10.2528/PIERM18022502
References

1. Bar-Cohen, Y., High Temperature Materials and Mechanisms, CRC Press, ISBN 9781466566453, Mar. 2014.

2. Ashutosh, S. P., C. Rajagopalan, V. Rakesh, S. Rajendran, S. Venugopal, K. V. Kasiviswanathan, and T. Jayakumar, "Evolution in the design and development of the in-service inspection device for the indian 500 mwe fast breeder reactor," Nucl. Eng. Des., Vol. 241, No. 9, 3719-3728, 2011.
doi:10.1016/j.nucengdes.2011.07.019

3. Sakai, K., H. Karasawa, T. Yagisawa, H. Mitsui, Y. Sawada, S. Ohta, and M. Kai, "Development and characteristics of servomotor for use under high temperature and radiation flux conditions," Electr. Eng. Jpn., Vol. 119, No. 4, 52-65, 1997.
doi:10.1002/(SICI)1520-6416(199706)119:4<52::AID-EEJ6>3.0.CO;2-I

4. Gieras, J. F., Material Engineering, 27-69, Springer, Dordrecht, Netherlands, 2008.

5. Kiyota, K. and A. Chiba, "Design of switched reluctance motor competitive to 60-kw ipmsm in third-generation hybrid electric vehicle," IEEE Transactions on Industry Applications, Vol. 48, No. 6, 2303-2309, 2012.
doi:10.1109/TIA.2012.2227091

6. Kerdsup, B. and N. H. Fuengwarodsakul, "Performance and cost comparison of reluctance motors used for electric bicycles," Electrical Engineering, Vol. 99, 475-486, Jun. 2017.
doi:10.1007/s00202-016-0373-6

7. Omekanda, A. M., B. Lequesne, H. Klode, S. Gopalakrishnan, and I. Husain, "Switched reluctance and permanent magnet brushless motors in highly dynamic situations: A comparison in the context of electric brakes," Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Vol. 3, 1570-1577, Oct. 2006.

8. Chang, L., "Design procedures of a switched reluctance motor for automobile applications," Canadian Conference on Electrical and Computer Engineering, Vol. 2, 947-950, IEEE, 1996.

9. Ranjini, K. S., R. Chellapandian, S. Murugan, and S. Venugopal, "Design and analysis of brushless servomotor for in-service inspection of PFBR," 2015 Annual IEEE India Conference (INDICON), 1-5, Dec. 2015.

10. Michon, M., S. D. Calverley, and K. Atallah, "Operating strategies of switched reluctance machines for exhaust gas energy recovery systems," IEEE Trans. Ind. Appl., Vol. 48, 1478-1486, Sept. 2012.
doi:10.1109/TIA.2012.2210010

11. Sundaram, M., P. Navaneethan, and T. D. Kumar, "Design and development of energy efficient submersible switched reluctance motor," Journal of Engineering & Technology, Vol. 4, No. 1, 2014.
doi:10.4103/0976-8580.123800

12. Widmer, J. D., R. Martin, and M. Kimiabeigi, "Electric vehicle traction motors without rare earth magnets," Sustainable Mater. Technol., Vol. 3, 7-13, 2015.
doi:10.1016/j.susmat.2015.02.001

13. Shoujun, S., L. Weiguo, D. Peitsch, and U. Schaefer, "Detailed design of a high speed switched reluctance starter/generator for more/all electric aircraft," Chin. J. Aeronaut., Vol. 23, No. 2, 216-226, 2010.
doi:10.1016/S1000-9361(09)60208-9

14. Bilgin, B., A. Emadi, and M. Krishnamurthy, "Design considerations for switched reluctance machines with a higher number of rotor poles," IEEE Trans. Ind. Electron., Vol. 59, 3745-3756, Oct. 2012.

15. Anwar, M. N., I. Husain, and A. V. Radun, "A comprehensive design methodology for switched reluctance machines," IEEE Trans. Ind. Appl., Vol. 37, 1684-1692, Nov. 2001.

16. Miller, T. J. E., Switched Reluctance Motors and Their Control, Magna Physics, 1993.

17. Lawrenson, P., J. Stephenson, P. Blenkinsop, J. Corda, and N. Fulton, "Variable-speed switched reluctance motors," IEE Proceedings B (Electric Power Applications) IET, Vol. 127, 253-265, 1980.
doi:10.1049/ip-b.1980.0034

18. Chiba, A., K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, "Development of a rare-earth-free sr motor with high torque density for hybrid vehicles," IEEE Trans. Energy Convers., Vol. 30, No. 1, 175-182, 2015.
doi:10.1109/TEC.2014.2343962

19. Boglietti, A., A. Cavagnino, and D. Staton, "Thermal analysis of TEFC induction motors," Conference Record of the 2003 IEEE Industry Applications Conference 38th IAS Annual Meeting, Vol. 2, 849-856, 2003.
doi:10.1109/IAS.2003.1257630

20. Rouhani, H., J. Faiz, and C. Lucas, "Lumped thermal model for switched reluctance motor applied to mechanical design optimization," Mathematical and Computer Modelling, Vol. 45, No. 5, 625-638, 2007.
doi:10.1016/j.mcm.2006.07.009

21. Suryadevara, R. and B. Fernandes, "Control techniques for torque ripple minimization in switched reluctance motor: An overview," 2013 8th IEEE International Conference on Industrial and Information Systems (ICIIS), 24-29, 2013.