Vol. 84
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-29
Corner Bent Integrated Design of 4G LTE and mmWave 5G Antennas for Mobile Terminals
By
Progress In Electromagnetics Research M, Vol. 84, 167-175, 2019
Abstract
Co-design of corner bent Multiple-Input Multiple-Output (MIMO) antennas catering to 4G LTE and mmWave 5G applications is proposed. The 4G LTE MIMO antenna module consists of two element microstrip-fed slot antennas operating from 1.7 to 3 GHz with fractional bandwidth of 55%, which covers LTE1900, LTE2300, and LTE2500 bands. For mmWave 5G MIMO antenna module, two element Vivaldi antennas with wideband operating from 25 to 38 GHz and fractional bandwidth of 41% are proposed. The mmWave 5G microstrip fed Vivaldi MIMO antennas exhibit orthogonal pattern diversity at 28 GHz with 1-dB gain bandwidth of 28%. The single element corner bent co-designed antenna is compact having dimensions of 14 × 51 × 0.254 mm3. The 4G LTE and mmWave 5G antennas are electrically close to each other by 0.01λ at 1.7 GHz for minimal physical footprint. Co-designed 4G LTE and mmWave MIMO antennas are integrated inside a typical mobile case. Simulated and measured results are presented.
Citation
Muhammad Idrees Magray Gulur Sadananda Karthikeya Khalid Muzaffar Shiban Kishen Koul , "Corner Bent Integrated Design of 4G LTE and mmWave 5G Antennas for Mobile Terminals," Progress In Electromagnetics Research M, Vol. 84, 167-175, 2019.
doi:10.2528/PIERM19062603
http://www.jpier.org/PIERM/pier.php?paper=19062603
References

1. Ji, J. K., "Compact multiband antenna employing wideband dual ZOR for mobile handset applications," ICT Express, Vol. 3, No. 2, 81-84, 2017.
doi:10.1016/j.icte.2017.05.001

2. Kurvinen, J., H. Kähkönen, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, "Co-designed mm-wave and LTE handset antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1545-1553, Mar. 2019.
doi:10.1109/TAP.2018.2888823

3. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, Dec. 2017.
doi:10.1109/TAP.2017.2671028

4. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, No. 2, 271-279, Feb. 2017.
doi:10.1049/iet-map.2016.0738

5. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, Aug. 1997.
doi:10.1109/8.611252

6. Alhalabi, R. A. and G. M. Rebeiz, "Differentially-fed millimeter-wave Yagi-Uda antennas with folded dipole feed," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 966-969, Mar. 2010.
doi:10.1109/TAP.2009.2039320

7. Sarabandi, K., J. Oh, L. Pierce, K. Shivakumar, and S. Lingaiah, "Lightweight, conformal antennas for robotic flapping flyers," IEEE Antennas and Propagation Magazine, Vol. 56, No. 6, 29-40, Dec. 2014.
doi:10.1109/MAP.2014.7011015

8. Jilani, S. F. and A. Alomainy, "Planar millimeter-wave antenna on low-cost flexible PET substrate for 5G applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-3, Davos, 2016.

9. Zhang, C., J. Gong, Y. Li, and Y. Wang, "Zeroth-order-mode circular microstrip antenna with patch-like radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 446-449, 2018.
doi:10.1109/LAWP.2018.2794553

10. Jarufe, C., et al., "Optimized corrugated tapered slot antenna for mm-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1227-1235, Mar. 2018.
doi:10.1109/TAP.2018.2797534

11. Schaubert, D., E. Kollberg, T. Korzeniowski, T. Thungren, J. Johansson, and K. Yngvesson, "Endfire tapered slot antennas on dielectric substrates," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 12, 1392-1400, Dec. 1985.
doi:10.1109/TAP.1985.1143542

12. Sugawara, S., Y. Maita, K. Adachi, K. Mori, and K. Mizuno, "Characteristics of a MM-wave tapered slot antenna with corrugated edges," IEEE MTT - S Int. Microw. Symp. Dig., Vol. 2, 533-536, Jun. 1998.

13. Karthikeya, G. S., M. P. Abegaonkar, and S. K. Koul, "CPW fed wideband corner bent antenna for 5G mobile terminals," IEEE Access, Vol. 7, 10967-10975, 2019.
doi:10.1109/ACCESS.2019.2891728

14. https://mpd.southwestmicrowave.com/wp-content/uploads/2018/06/1092-01A-6.pdf.

15. Valagiannopoulos, C. A. and N. K. Uzunoglu, "Green's function of a parallel plate waveguide with multiple abrupt changes of interwall distances," Radio Science, Vol. 44, No. 5, 1-12, Oct. 2009.

16. Valagiannopoulos, C. A., "Isolating the singular term of the green's function in the vicinity of the corner formulated by two intersecting waveguides," Microw. Opt. Technol. Lett., Vol. 55, 16-23, 2013.
doi:10.1002/mop.27227

17. Ma, C., Q. Zhang, and E. Keuren, "Right-angle slot waveguide bends with high bending efficiency," Opt. Express, Vol. 16, 14330-14334, 2008.
doi:10.1364/OE.16.014330

18. Monzon, C., D. W. Forester, and P. Loschialpo, "Exact solution to line source scattering by an ideal left-handed wedge," Physical Review. E, Vol. 72, 056606, 2005.
doi:10.1103/PhysRevE.72.056606

19. Valagiannopoulos, C. A., "On smoothening the singular field developed in the vicinity of metallic edges," International Journal of Applied Electromagnetics and Mechanics, Vol. 31, 67-77, 2009.
doi:10.3233/JAE-2009-1048

20. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008.
doi:10.2528/PIERC08042906