Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-16
Variode Enabled Frequency-Reconfigurable Microstrip Patch Antenna with Operation Band Covering s and C Bands
By
Progress In Electromagnetics Research M, Vol. 88, 159-167, 2020
Abstract
A frequency continuous reconfigurable microstrip patch antenna with operation band covering S-band and C-band is introduced. The antenna consists of a central rectangular patch and four parasitic patches with a symmetrical structure, connected by four varactor diodes in the middle position of the edge of each patch. With help of HFSS microwave studio simulation, results have shown that, by altering the bias voltage on varactor diodes, the operated frequencies vary continuously within a wide range from 3.29 to 4.01 GHz and 5.35 to 7.00 GHz, which cover S-band and C-band. Further measurement, which verifies the simulation by reasonable agreement, has been carried out. Besides, this frequency reconfigurable antenna maintains broadside radiation and stable radiation pattern. Specifically, the gain is basically maintained at around 4.5 dBi with the working frequency increasing from 3.60 to 7.00 GHz. Compared with other frequency-reconfigurable antennas available in previous literature, the proposed antenna has advantages of a wide frequency tuning range, high frequency selectivity, simple and stable structure, low cost, and miniaturization, which make it a promising candidate as cognitive radio and future wireless communication systems.
Citation
Caibiao Guo Lianwen Deng Jian Dong Tulin Yi Congwei Liao Shengxiang Huang Heng Luo , "Variode Enabled Frequency-Reconfigurable Microstrip Patch Antenna with Operation Band Covering s and C Bands," Progress In Electromagnetics Research M, Vol. 88, 159-167, 2020.
doi:10.2528/PIERM19110204
http://www.jpier.org/PIERM/pier.php?paper=19110204
References

1. Sboui, L., Z. Rezki, A. Sultan, and M. S. Alouini, "A new relation between energy efficiency and spectral efficiency in wireless communications systems," IEEE Wireless Communications, Vol. 26, No. 3, 168-174, 2019.
doi:10.1109/MWC.2019.1800161

2. Zhou, L., J. Rodrigues, H. Wang, M. G. Martini, and V. Leung, "5G multimedia communications: Theory, technology, and application," IEEE Multimedia, Vol. 26, No. 1, 8-9, 2019.
doi:10.1109/MMUL.2018.2875256

3. Balasubramaniam, S., S. A. Wirdatmadja, M. T. Barros, Y. Koucheryavy, and J. M. Jornet, "Wireless communications for optogenetics-based brain stimulation: Present technology and future challenges," IEEE Communications Magazine, Vol. 56, No. 7, 218-224, 2018.
doi:10.1109/MCOM.2018.1700917

4. Chattha, H. T., M. Hanif, X. Yang, I. E. Rana, and Q. H. Abbasi, "Frequency reconfigurable patch antenna for 4G LTE applications," Progress In Electromagnetics Research M, Vol. 69, 1-13, 2018.
doi:10.2528/PIERM18022101

5. Chen, Y., B. Ai, Y. Niu, R. He, and Z. Han, "Resource allocation for device-to-device communications in multi-cell multi-band heterogeneous cellular networks," IEEE Transactions on Vehicular Technology, Vol. 68, No. 5, 4760-4773, 2019.
doi:10.1109/TVT.2019.2903858

6. Bjorn, T., T. Arno, F. Jonas, C. Davide, T. R. Christer, V. G¨unter, M. Luc, and J. Wout, "Radio frequency electromagnetic field compliance assessment of multi-band and MIMO equipped radio base stations," Bioelectromagnetics, Vol. 35, No. 4, 296-308, 2014.
doi:10.1002/bem.21843

7. Tamagnone, M., J. S. G. Diaz, J. R. Mosig, and J. Perruisseaucarrier, "Reconfigurable THz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, No. 21, 836-842, 2012.
doi:10.1063/1.4767338

8. Piazza, D. and K. R. Dandekar, "Reconfigurable antenna solution for MIMO-OFDM systems," Electronics Letters, Vol. 42, No. 8, 446, 2006.
doi:10.1049/el:20060221

9. Senanayake, R., P. J. Smith, P. A. Martin, and J. S. Evans, "Performance analysis of reconfigurable antenna arrays," IEEE Transactions on Communications, Vol. 65, No. 6, 2726-2739, 2017.
doi:10.1109/TCOMM.2017.2682081

10. Tian, W., D. Wu, Q. Chao, Z. Chen, and Y. Wang, "Application of genetic algorithm in M × N reconfigurable antenna array based on RF MEMS switches," Modern Physics Letters B, Vol. 32, No. 30, 585-702, 2018.
doi:10.1142/S0217984918503657

11. Zhou, Q. F., H. An, P. Min, F. Qu, and L. Fan, "On the mode switching of reconfigurable-antennabased blind interference alignment," IEEE Transactions on Vehicular Technology, Vol. 66, No. 8, 6958-6968, 2017.
doi:10.1109/TVT.2017.2663200

12. Yadav, A., M. Tewari, and R. P. Yadav, "Pixel shape ground inspired frequency reconfigurable antenna," Progress In Electromagnetics Research C, Vol. 89, 75-85, 2019.
doi:10.2528/PIERC18082102

13. Chaouche, Y. B., F. Bouttout, M. Nedil, I. Messaoudene, and I. Benmabrouk, "A frequency reconfigurable U-shaped antenna for dual-band WIMAX/WLAN systems," Progress In Electromagnetics Research C, Vol. 87, 63-71, 2018.
doi:10.2528/PIERC18071004

14. George, R., C. R. S. Kumar, S. Gangal, and M. Joshi, "Frequency reconfigurable pixel antenna with PIN diodes," Progress In Electromagnetics Research Letters, Vol. 86, 59-65, 2019.
doi:10.2528/PIERL19051803

15. Shirazi, M., J. Huang, T. Li, and G. Xun, "A switchable-frequency slot-ring antenna element for designing a reconfigurable array," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 2, 229-233, 2017.
doi:10.1109/LAWP.2017.2781463

16. Bharathi, A., M. Lakshminarayana, and P. V. D. S. Rao, "A quad-polarization and frequency reconfigurable square ring slot loaded microstrip patch antenna for WLAN applications," AEU — International Journal of Electronics and Communications, Vol. 78, 15-23, 2017.
doi:10.1016/j.aeue.2017.05.015

17. Nafde, Y. and R. Pande, "Design and analysis of resistive series RF MEMS switches based fractal U-slot reconfigurable antenna," Wireless Personal Communications, Vol. 97, No. 12, 1-16, 2017.

18. Nguyen-Trong, N., L. Hall, and C. Fumeaux, "A frequency- and polarization-reconfigurable stubloaded microstrip patch antenna," IEEE Transactions on Antennas & Propagation, Vol. 63, No. 11, 5235-5240, 2015.
doi:10.1109/TAP.2015.2477846

19. Ullah, S., S. A. A. Shah, M. F. Khan, S. Ullah, and J. A. Flint, "Design of a multi-band frequency reconfigurable planar monopole antenna using truncated ground plane for Wi-Fi, WLAN and WiMAX applications," ICOSST 2014, 2014.

20. Tong, L., H. Zhai, W. Xin, L. Long, and C. Liang, "Frequency-reconfigurable bow-tie antenna for bluetooth, WiMAX, and WLAN applications," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 171-174, 2015.

21. Haraz, O. M., S. A. Alshebeili, and A. R. Sebak, "Low-cost high gain printed log-periodic dipole array antenna with dielectric lenses for V-band applications," Microwaves Antennas & Propagation, IET, Vol. 9, No. 6, 541-552, 2015.
doi:10.1049/iet-map.2014.0319

22. Cai, Y. M., S. Gao, Y. Yin, W. Li, and Q. Luo, "Compact-size low-profile wideband circularly polarized omnidirectional patch antenna with reconfigurable polarizations," IEEE Transactions on Antennas & Propagation, Vol. 64, No. 5, 2016-2021, 2016.
doi:10.1109/TAP.2016.2535502

23. Sato, S., S. Saito, and Y. Kimura, "A frequency tunable ring microstrip antenna fed by an Lprobe with varactor diodes," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015.

24. Majid, H. A., M. K. A. Rahim, M. R. Hamid, N. A. Murad, and M. F. Ismail, "Frequencyreconfigurable microstrip patch-slot antenna," IEEE Antennas & Wireless Propagation Letters, Vol. 12, No. 1921, 218-220, 2013.
doi:10.1109/LAWP.2013.2245293

25. Cai, Y., K. Li, Y. Yin, S. Gao, W. Hu, and L. Zhao, "A low-profile frequency reconfigurable grid-slotted patch antenna," IEEE Access, Vol. 6, 36305-36312, 2018.
doi:10.1109/ACCESS.2018.2850926

26. Tateno, H., S. Saito, and Y. Kimura, "A frequency-tunable varactor-loaded single-layer ring microstrip antenna with a bias circuit on the backside of the ground plane," 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2016.