Vol. 103
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-14
A Compact CPW-Fed Triple-Band MIMO Antenna with Neutralization Line Decoupling for WLAN/WiMAX /5G Applications
By
Progress In Electromagnetics Research M, Vol. 103, 129-140, 2021
Abstract
A compact CPW-fed triple-band Multiple Input Multiple Output (MIMO) antenna is designed for WLAN, WiMAX, and 5G applications in this article. Three resonant frequencies, including 2.4 GHz, 3.5 GHz, and 5.5 GHz are generated by two branches and a rectangle radiation patch. The proposed antenna comprises two antenna elements placed side by side with a meandering neutralization line (NL) inserted between the elements to realize decoupling. To analyze the performance, it is fabricated and experimented. The measured results reveal that it has three impedance bandwidths: 2.38-2.52 GHz (5.7%), 3.28-3.62 GHz (10.1%), and 5.05-6.77 GHz (29.1%) with the measured isolation up to 16 dB. Furthermore, the parameters of diversity performance like envelope correlation coefficient (ECC), diversity gain (DG), efficiency, gain, channel capacity loss (CCL), mean effective gain (MEG), and total active reflection coefficient (TARC) are also analyzed, and the results indicate that the proposed antenna is desirable for integration in WLAN/WiMAX/5G devices.
Citation
Chengzhu Du, Zhuolin Zhao, Xun Wang, and Fu-Hui Yang, "A Compact CPW-Fed Triple-Band MIMO Antenna with Neutralization Line Decoupling for WLAN/WiMAX /5G Applications," Progress In Electromagnetics Research M, Vol. 103, 129-140, 2021.
doi:10.2528/PIERM21042301
References

1. Sun, L. B., Y. Li, Z. J. Zhang, and Z. H. Feng, "Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2494-2503, 2020.
doi:10.1109/TAP.2019.2948707

2. Bengtsson, E. L., F. Rusek, et al. "A simulation framework for multiple-antenna terminals in 5G massive MIMO systems," IEEE Access, Vol. 5, 26819-26831, 2017.
doi:10.1109/ACCESS.2017.2775210

3. Islam, S. N., M. Kumar, et al. "Design of a compact triple band antenna with independent frequency tuning for MIMO applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 3, e21620, 2019.
doi:10.1002/mmce.21620

4. Kumar, M. and V. Nath, "Design and development of triple-band compact ACS-fed MIMO antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications," Analog Integrated Circuits and Signal Processing, Vol. 103, No. 3, 461-470, 2020.
doi:10.1007/s10470-020-01626-9

5. Liang, J. J., G. L. Huang, et al. "A triple-band antenna for MIMO WLAN applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, No. 5, e21251, 2018.
doi:10.1002/mmce.21251

6. Rajeshkumar, V. and R. Rajkumar, "SRR loaded compact tri-band MIMO antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 95, 43-53, 2021.
doi:10.2528/PIERL20100704

7. Goud, J. R., N. K. Rao, and A. M. Prasad, "Design of triple band U-slot MIMO antenna for simultaneous uplink and downlink communications," Progress In Electromagnetics Research C, Vol. 106, 271-283, 2020.
doi:10.2528/PIERC20082403

8. Amit, K., A. Abdul, et al. "Design of triple-band MIMO antenna with one band-notched characteristic," Progress In Electromagnetics Research C, Vol. 86, 41-53, 2018.

9. Chaudhari, A. A. and R. K. Gupta, "A simple tri-band MIMO antenna using a single ground stub," Progress In Electromagnetics Research C, Vol. 86, 191-201, 2018.
doi:10.2528/PIERC18061803

10. Pasumarthi, S. R., J. B. Kamili, and M. P. Avala, "Design of tri-band MIMO antenna with improved isolation using DGS and Vias," Wireless Personal Communications, Vol. 110, No. 3, 1523-1532, 2020.
doi:10.1007/s11277-019-06799-9

11. Niu, B. J. and J. H. Tan, "Compact tri-band MIMO antenna based on quarter-mode slotted substrate-integrated-waveguide cavity," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 3, e22101, 2019.

12. Nandi, S. and A. Mohan, "CRLH unit cell loaded tri-band compact MIMO antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1816-1819, 2017.

13. Sun, J. S. and H. S. Fang, "Triple-band MIMO antenna for mobile wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 15, 500-503, 2016.
doi:10.1109/LAWP.2015.2454536

14. Liu, R. P., X. An, et al. "Neutralization line decoupling tri-band multiple-input multiple-output antenna design," IEEE Access, Vol. 8, 27018-27026, 2020.
doi:10.1109/ACCESS.2020.2971038

15. Biswas, A. K. and U. Chakraborty, "Investigation on decoupling of wide band wearable multiple-input multiple-output antenna elements using microstrip neutralization line," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 7, e21723, 2019.
doi:10.1002/mmce.21723

16. Saleh, A. M. and K. H. Sayidmarie, "Compact tri-band MIMO antenna with high port isolation for WLAN and WiMAX applications," Loughborough Antennas & Propagation Conference (LAPC), 2016.

17. Du, C. Z. and Z. L. Zhao, "A CPW-fed dual-band MIMO antenna with enhanced isolationfor 5G application," Progress In Electromagnetics Research M, Vol. 98, 11-20, 2020.
doi:10.2528/PIERM20081203

18. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, No. 9-10, 415-427, 2018.
doi:10.1515/freq-2017-0276

19. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House Inc., 2001.

20. Hasan, M. I., M. A. Motin, and M. S. Habib, "Circular ring slotting technique of making compact microstrip rectangular patch antenna for four band applications," 2013 International Conference on Informatics, Electronics and Vision (ICIEV), 1-4, Dhaka, 2013.