Vol. 110
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-05-28
Ant Lion Optimization to Minimize Emissions of Power Transmission Lines
By
Progress In Electromagnetics Research M, Vol. 110, 171-184, 2022
Abstract
In this paper, best arrangement of overhead transmission line conductors is determined via the ant lion optimization (ALO), to minimize the emitted electric and magnetic fields. Compute delectric and magnetic fields are compared with measured datain order to confirm the validity and usefulness of the formulation. ALO algorithm is applied to optimize both single and double circuit transmission lines. The two cases of spacing between line conductors are considered, namely, taking into account the effects of ice and wind, and neglecting the effects of ice and wind. IEC-71 standards are followed for the spacings in both cases. A MATLAB computer code based on ALO algorithm is written for finding the positions of line conductors that will minimize field emissions. Significant reduction of the fields is observed owing to the new optimized positions of conductors. The optimized results of ALO are compared with previous results obtained by genetic algorithm and particle swarm optimization. To the authors' knowledge, this is the first paper that applies ALO to organize high-voltage line conductors. Finally, to demonstrate the financial applicability of the solution, comparison is held between the cost of rearranging transmission line conductors and the cost of non-reducing the fields, based on a survey for people living near high voltage line in the populated city of Irbid in Jordan. Although the operating frequency for the examples in this paper is 50 Hz, the algorithm can be used for other power frequencies such as 60 Hz. The solutions are 2D, where infinite line length is assumed. Also, the algorithm uses the recommended exposure limits of 0.4 µT for the magnetic field and 5 kV/m for the electric field.
Citation
Mohammed Al Salameh, and Sama Mohamad Kher Alnemrawi, "Ant Lion Optimization to Minimize Emissions of Power Transmission Lines," Progress In Electromagnetics Research M, Vol. 110, 171-184, 2022.
doi:10.2528/PIERM22040605
References

1. Bonato, M., et al. "Characterization of children's exposure to extremely low frequency magnetic fields by stochastic modeling," Int. J. Environ. Res. Public Health, Vol. 15, No. 9, 1963, 2018.
doi:10.3390/ijerph15091963

2. Baharara, J. and Z. Zahedifar, "The effect of low-frequency electromagnetic fields on some biological activities of animals," Arak Med. Univ. J., Vol. 15, No. 7, 2012.

3. Florea, G. A., A. Dinca, and S. I. A. Gal, "An original approach to the biological impact of the low frequency electromagnetic fields and proofed means of mitigation," 2009 IEEE Bucharest PowerTech, 1-8, 2009.

4. Townsend, D. A., "Risk analysis and EMI risk abatement strategies for hospitals: Scientific and legal approaches," IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 1304-1307, 2001.

5. Maisch, D., J. Podd, and B. Rapley, "Changes in health status in a group of CFS patients following removal of excessive 50 Hz magnetic field exposure," Journal of Australian College of Nutritional & Environmental Medicine, Vol. 21, No. 1, 15-19, Apr. 2002.

6. Dawson, T. W., K. Caputa, M. A. Stuchly, R. B. Shepard, R. Kavet, and A. Sastre, "Pacemaker interference by magnetic fields at power line frequencies," IEEE Trans. Biomed. Eng., Vol. 49, No. 3, 254-262, 2002.
doi:10.1109/10.983460

7. Yerra, L. and P. C. Reddy, "Effects of electromagnetic interference on implanted cardiac devices and their management," Cardiology in Review, Vol. 15, No. 6, 304-309, 2007.
doi:10.1097/CRD.0b013e31813e0ba9

8. Smith, S. and R. Aasen, "The effects of electromagnetic fields on cardiac pacemakers," IEEE Trans. Broadcast., Vol. 38, No. 2, 136-139, 1992.
doi:10.1109/11.142666

9. Zhu, Y., C. Gao, L. Shi, and B. Zhou, "Analysis and test of EM shielding for low-frequency magnetic field," IEEE International Symposium on Electromagnetic Compatibility, 345-349, Qingdao, China, Oct. 23-26, 2007.

10. Wassef, K., V. V. Varadan, and V. K. Varadan, "Magnetic field shielding concepts for power transmission lines," IEEE Transactions on Magnetics, Vol. 34, No. 3, 649-654, 1998.
doi:10.1109/20.668061

11. Canova, A. and L. Giaccone, "Magnetic field mitigation of power cable by high magnetic coupling passive loop," IET Conference Publications, No. 550, CP, 2009.

12. Melo, M. O. B. C., L. C. A. Fonseca, E. Fontana, and S. R. Naidu, "Electric and magnetic fields of compact transmission lines," IEEE Transactions on Power Delivery, Vol. 14, No. 1, 200-204, 1999.
doi:10.1109/61.736715

13. Filippopoulos, G., D. Tsanakas, G. Kouvarakis, J. Voyatzakis, M. Amman, and K. Papailiou, "Optimum conductor arrangement of compact lines for electric and magnetic field minimization - Calculations and measurements," Med Power, Athens, Nov. 4-6, 2002.

14. Mimos, E. I., D. K. Tsanakas, and A. E. Tzinevrakis, "Solutions for high voltage transmission in suburban regions regarding the electric and magnetic fields," Automation Congress, 1-6, 2008.

15. Nunchuen, S. and V. Tarateeraseth, "Electric and magnetic field minimization using optimal phase arrangement techniques for MEA overhead power transmission lines," ECTI Trans. Electr. Eng. Electron. Commun., Vol. 19, No. 1, 51-58, 2021.
doi:10.37936/ecti-eec.2021191.217575

16. Bansal, J. C., "Particle swarm optimization," Studies in Computational Intelligence, Vol. 779, 2019.

17. Katoch, S., S. S. Chauhan, and V. Kumar, "A review on genetic algorithm: Past, present, and future," Multimedia Tools and Applications, Vol. 80, No. 5, 8091-8126, 2021.
doi:10.1007/s11042-020-10139-6

18. Kumar, M., M. Husain, N. Upreti, and D. Gupta, "Genetic algorithm: Review and application," SSRN Electronic Journal, 2020.

19. Al Salameh, M. S. H., I. M. Nejdawi, and O. A. Alani, "Using the nonlinear particle swarm optimization (PSO) algorithm to reduce the magnetic fields from overhead high voltage transmission lines," Int. J. Res. Rev. Appl. Sci., Vol. 4, No. 1, 18-31, 2010.

20. Al Salameh, M. S. H. and M. A. S. Hassouna, "Arranging overhead power transmission line conductors using swarm intelligence technique to minimize electromagnetic fields," Progress In Electromagnetics Research B, Vol. 26, 213-236, 2010.
doi:10.2528/PIERB10082104

21. El Dein, A. Z., "Optimal arrangement of egyptian overhead transmission lines' conductors using genetic algorithm," Arabian Journal for Science & Engineering, Vol. 39, No. 2, 1049-1059, 2014.
doi:10.1007/s13369-013-0698-7

22. Deželak, K., F. Jakl, and G. Štumberger, "Arrangements of overhead power line phase conductors obtained by differential evolution," Electr. Power Syst. Res., Vol. 81, No. 12, 2164-2170, Dec. 2011.
doi:10.1016/j.epsr.2011.07.015

23. Paganotti, A. L., M. M. Afonso, M. A. de O. Schoeder, R. S. Alipio, and E. N. Gonçalves, "Arrangements of overhead power line phase conductors achieved by differential evolution method," Sociedade Brasileira de Automática, Vol. 1, No. 1, 2019.

24. Bravo-Rodríguez, J. C., J. C. Del-Pino-López, and P. Cruz-Romero, "A survey on optimization techniques applied to magnetic field mitigation in power systems," Energies, Vol. 12, No. 7, 1332, 2019.
doi:10.3390/en12071332

25. Mirjalili, S., "The ant lion optimizer," Adv. Eng. Softw., Vol. 83, 80-98, 2015.
doi:10.1016/j.advengsoft.2015.01.010

26. Bayliss, C. R. and B. J. Hardy, Transmission and Distribution: Electrical Engineering, 4th Ed., Elsevier Ltd., UK, Feb. 2012.

27. Garrido, C., A. F. Otero, and J. Cidras, "Low-frequency magnetic fields from electrical appliances and power lines," IEEE Transactions on Power Delivery, Vol. 18, No. 4, 1310-1319, Oct. 2003.
doi:10.1109/TPWRD.2003.817744

28. Saadat, H., Power System Analysis, 2nd Ed., McGraw Hill, USA, 2002.

29. Al Hazaimeh, L. B., "Genetic algorithm optimization of the parameters of high voltage power transmission lines based on the emitted electromagnetic fields,", M.Sc Thesis, Department of Electrical Engineering, Jordan University of Science and Technology, 2021.

30. Trlep, M., A. Hamler, M. Jesenik, and B. Stumberger, "Electric field distribution under transmission lines dependent on ground surface," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1748-1751, 2009.
doi:10.1109/TMAG.2009.2012806

31. Winterfeldt, D., "Power grid and land use policy analysis,", Final Report, California Department of Health Services, and the Public Health Institute, 2001.

32. Al Salameh, M. S. H., Waves and Fields of Wireless Communications and Electricity: Health-effects and Unconventional Utilizations, Lap Publishing, Printed in USA and in the UK, 2011.

33. Viscusi, W. K. and C. J. Masterman, "Income elasticities and global values of a statistical life," Journal of Benefit-Cost Analysis, Vol. 8, No. 2, 226-250, 2017.
doi:10.1017/bca.2017.12

34. Robinson, L. A., J. R. Baxter, and W. Raich, "2016 Guidelines for Regulatory Impact Analysis, Appendix D: Updating value per statistical life (VSL) estimates for inflation and changes in real income,", U.S. Department of Health and Human Services, 2016.

35. United States General Accounting Office "Electromagnetic fields: Federal efforts to determine health effects are behind schedule,", Report to Committee on Natural Resources, House of Representatives, Washington, Jun. 1994, URL: https://www.gao.gov/assets/rced-94-115.pdf.

36. Website, World Bank data "Inflation, consumer prices (annual %) - Jordan,", https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG?end=2020&locations=JO&start=1970&view=chart.