Vol. 1
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-01-29
A Uniqueness Theorem for Initial-Boundary Value Problems in Tellegen Medium
By
Progress In Electromagnetics Research C, Vol. 1, 73-85, 2008
Abstract
Uniqueness of the initial-boundary value problems for a Tellegen media is studied. Initial-boundary value problems for a Tellegen Medium are summarized for the sake completeness; the conservation of energy for such a medium is reviewed. Sufficient conditions are given for the positive definiteness of the energy stored in a Tellegen media due to the fields. It is shown that the if the energy stored in a Tellegen medium is positive definite, then an initialboundary value problem for a Tellegen media has only one solution, if it exists.
Citation
Burhanettin S. Altan , "A Uniqueness Theorem for Initial-Boundary Value Problems in Tellegen Medium," Progress In Electromagnetics Research C, Vol. 1, 73-85, 2008.
doi:10.2528/PIERC08011504
http://www.jpier.org/PIERC/pier.php?paper=08011504
References

1. Maxwell, J., "A dynamical theory of the electromagnetic field," Royal Society Transactions, Vol. CLV, 1865, reprinted in Simpson, T., Maxwell on the Electromagnetic Field, Rutgers University Press, New Brunswick, NJ, 1997.

2. Rothwell, E. J. and M. J. Cloud, Electromagnetics, CRC Press, LLC, New York, 2001.

3. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, London, 1994.

4. Lindman, K. F., "Uber eine durch ein isotropes system von spiralformigen resanotoren erzeugte rotationpolarisation der electromagnetischen wellen," Annalen der Physik, Vol. 63, No. 4, 621-644, 1920.
doi:10.1002/andp.19203682303

5. Tellegen, B. D. F., "The gyrator, a new electric network element ," Phillips Research Report, Vol. 3, No. 2, 81-101, 1948.

6. Lakhtakia, A., "On the genesis of post constrain in modern electromagnetism," Int. J. for Light and Electron Optics, Vol. 115, No. 4, 151-158, 2004.
doi:10.1016/S0030-4026(08)70002-0

7. Lindell, I. V., "The class of bi-anisotropic IB-media," Progress in Electromagnetics Research, Vol. 57, 1-18, 2006.
doi:10.2528/PIER05061302

8. Nair, A. and P. K. Choudhury, "On the analysis of field patterns in chirofibers," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2277-2286, 2007.
doi:10.1163/156939307783134470

9. Panin, S. B., P. D. Smith, and A. Y. Poyedinchuk, "Elliptical to linear polarization transformation by a grating on a chiral medium," Journal of Electromagnetic Waves and Applications , Vol. 21, No. 13, 1885-1899, 2007.

10. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007.

11. Khatir, B. N., M. Al-Kanhal, and A. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866

12. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741

13. Sheen, J., "Time harmonic electromagnetic fields in an biaxial anisotropic medium ," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 6, 753-767, 2005.
doi:10.1163/1569393054069082

14. Zheng, H. X., X. Q. Sheng, and E. K. N. Yung, "Computation of scattering from conducting bodies coated with chiral materials using conformal FDTD ," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1471-1484, 2004.
doi:10.1163/1569393042954901

15. Zhang, Y., X. Wei, and E. Li, "Electromagnetic scattering from three-dimensional bianisotropic objects using hybrid finite element-boundary integral method," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1549-1563, 2004.
doi:10.1163/1569393042954857

16. Lindell, I. V. and K. H. Wallen, "Differential-form electromagnetics and bi-anisotropic Q-media," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 7, 957-968, 2004.
doi:10.1163/156939304323105772

17. Lindell, I. V. and K. H.Wallen, "Generalized Q-media and field decomposition in differential-form approach," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1045-1056, 2004.
doi:10.1163/1569393042955397

18. Li, L.-W., N.-H. Lim, and J. A. Kong, "Cylindrical vector wave function representation of Green's dyadic in gyrotropic bianisotropic media ," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 11, 1589-1591, 2003.
doi:10.1163/156939303772681442

19. Zheng, L. G. and W. X. Zhang, "Analysis of bi-anisotropic PBG structure using plane wave expansion method," Progress In Electromagnetics Research, Vol. 42, 233-246, 2003.
doi:10.2528/PIER03012101

20. Naqvi, S. A., M. Faryad, Q. A. Naqvi, and M. Abbas, "Fractional duality in homogeneous bi-isotropic medium ," Progress In Electromagnetics Research, Vol. 78, 159-172, 2008.
doi:10.2528/PIER07090701