Vol. 1
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-02-19
A New Uniplanar Electromagnetic Bandgap Power Plane with Broadband Suppression of Simultaneously Switching Noise
By
Progress In Electromagnetics Research M, Vol. 1, 95-99, 2008
Abstract
A new uniplanar electromagnetic bandgap (EBG) power/ground planes is proposed with broadband suppression of simultaneously switching noise (SSN) from 370MHz to 4.9 GHz. Meander line bridge is used to increase the inductance between the two neighboring units, which can make the proposed power/ground structure suppress the SSN at low frequencies effectively. Excellent SSN suppression performance is validated both numerically and experimentally. Good agreement is seen. The proposed uniplanar EBG power/ground planes structure can be widely used in high speed integrated circuits.
Citation
Wei-Hua Chen Hou Zhang Jian Wang , "A New Uniplanar Electromagnetic Bandgap Power Plane with Broadband Suppression of Simultaneously Switching Noise," Progress In Electromagnetics Research M, Vol. 1, 95-99, 2008.
doi:10.2528/PIERM08012203
http://www.jpier.org/PIERM/pier.php?paper=08012203
References

1. Van den Berghe, S., F. Olyslager, D. de Zutter, J. de Moerloose, and W. Temmerman, "Study of the ground bounce caused by power plane resonances ," IEEE Trans. Electromagn. Compat. , Vol. 40, No. 2, 111-119, May 1998.
doi:10.1109/15.673616

2. Smith, L. D., "Simultaneous switching noise and power plane bounce for CMOS technology," Proc. IEEE 8th Top. Meet. Electr. Perform. Electron. Packag. , 163-166, San Deigo, CA, Oct. 1999.

3. Wu, T.-L., Y.-H. Lin, and S.-T. Chen, "A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures ," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 7, 337-339, July 2004.

4. Wu, T.-L., C.-C.Wang, Y.-H. Lin, T.-K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microw. Wireless Comp. Lett., Vol. 15, No. 3, 174-176, Mar. 2005.
doi:10.1109/LMWC.2005.844216

5. Chang, C. C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetics Research, Vol. 41, 211-235, 2003.

6. Simovski, C. R., "High-impedance surfaces based on self-resonant grids, analytical modeling and numerical simulations ," Progress In Electromagnetics Research, Vol. 43, 239-256, 2003.
doi:10.2528/PIER03042801

7. Ziolkowski, R. W., "FDTD simulations of reconfigurable electromagnetic bandgap structures for millimeter wave applications ," Progress In Electromagnetics Research, Vol. 41, 159-183, 2003.
doi:10.2528/PIER02010807

8. Yuan, H.-W., S.-X. Gong, X. Wang, and W.-T. Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
doi:10.2528/PIERB07102302