1. Andalib, A., A. Rostami, and N. Granpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical fibers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
doi:10.2528/PIER07092502 Google Scholar
2. Guenneu, S., A. Nicolet, F. Zolla, and S. Lasquellec, "Numerical and theoretical study of photonic crystal fibers," Progress In Electromagnetics Research, Vol. 41, 271-305, 2003. Google Scholar
3. Kumar, D., P. K. Choudhury, and O. N. Singh II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations — A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.
doi:10.2528/PIER07120302 Google Scholar
4. Saitoh, K. and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Optical Society of America, Vol. 13, No. 1, 267-274, 2005. Google Scholar
5. Kim, J. I., Analysis and applications of microstructure and Holey optical fibers, Blacksburg, Virginia, Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University , September 10, 2003.
6. Li, Y., C. Wang, and M. Hu, "A fully vectorial effective index method for photonic crystal fibers: Application to dispersion calculation ," Optics Communications, Vol. 238, 29-33, 2004.
doi:10.1016/j.optcom.2004.04.040 Google Scholar
7. Li, Y., C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, "Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches," Applied Physics B, Vol. 85, 597-601, 2006.
doi:10.1007/s00340-006-2246-6 Google Scholar
8. Sinha, R. K. and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microwave and Optical Technology Letters, Vol. 37, No. 2, 129-132, 2003.
doi:10.1002/mop.10845 Google Scholar
9. Rostami, A. and A. Andalib, "A principal investigation of the group velocity dispersion (GVD) profile for optimum dispersion compensation in optical fibers: A theoretical study ," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402 Google Scholar
10. Panajotovic, A., D. Milovic, and A. Biswas, "Influence of even order dispersion on soliton transmission quality with coherent intereference ," Progress In Electromagnetics Research B, Vol. 3, 63-72, 2008.
doi:10.2528/PIERB07120404 Google Scholar
11. Benson, T. M. and P. C. Kendall, "Variational techniques including effective and weighted index methods ," Progress In Electromagnetics Research, Vol. 10, 1-40, 1995. Google Scholar
12. Zhu, Z. M. and T. Brown, "Analysis of the space filling modes of photonic crystal fibers," Optics Express, Vol. 8, No. 10, 547-554, 2001. Google Scholar
13. Bjarklev, A., J. Broeng, and A. S. Bjarklev, Photonic Crystal Fibres, Kluwer Academic, 2003.
14. Birks, T. A., J. C. Knight, and P. S. J. Russell, "Endlessly singlemode crystal fiber," Optical Letters, Vol. 22, No. 13, 961-963, 1997.
doi:10.1364/OL.22.000961 Google Scholar
15. Husakou, A. V. and J. Herrmann, "Supercontinuum generation of higher order solitons by fission in photonic crystal fibers," Phys. Rev. Lett., Vol. 34, No. 10, 1064-1076, 2001. Google Scholar
16. Koshiba M. and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Optics Letters, Vol. 29, No. 10, 1739-1741, 2004.
doi:10.1364/OL.29.001739 Google Scholar
17. Koshiba, M. and K. Saitoh, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron, Vol. 38, 927-933, 2002. Google Scholar