1. Vinoy, K. J. and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, 1996.
2. Chen, X. J. and X. W. Shi, "Comments on a formula in radar cross section," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2389-2394, 2007.
doi:10.1163/156939307783134434 Google Scholar
3. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, 114-185, 1994. Google Scholar
4. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304 Google Scholar
5. Chew, W. C., J. M. Jin, and E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microwave Opt. Technol. Lett., Vol. 15, No. 6, 363-369, 1997.
doi:10.1002/(SICI)1098-2760(19970820)15:6<363::AID-MOP8>3.0.CO;2-C Google Scholar
6. Jancewicz, B., "Plane electromagnetic wave in PEMC," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 647-659, 2007.
doi:10.1163/156939306776137746 Google Scholar
7. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
9. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Micr. Theory. Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
10. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
11. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley Interscience , 2006.
12. Chen, H., B. I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585 Google Scholar
13. Engheta, N. and R. W. Ziolkowski, "A positive future for doublenegative metamaterials," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
14. Lu, J., B. I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a left-haned dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 689-697, 2006.
doi:10.1163/156939306776137728 Google Scholar
15. Villa-Villa, F., J. Gaspar-Armenta, and A. Mendoza-Suarez, "Surface modes in one dimensional photonic crystals that include left handed materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 485-499, 2007.
doi:10.1163/156939307779367323 Google Scholar
16. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
doi:10.1163/156939307783134452 Google Scholar
17. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green’s functions of multilayer media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504 Google Scholar
18. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Multilayered media Green’s functions for MPIE with general electric and magnetic sources by the Hertz potential approach," Progress In Electromagnetics Research, Vol. 33, 141-165, 2001.
doi:10.2528/PIER00120802 Google Scholar
19. Naqvi, Q. A. and A. A. Rizvi, "Fractional solutions for the Helmholtz’s equation in a multilayered geometr," Progress In Electromagnetics Research, Vol. 21, 319-335, 1999.
doi:10.2528/PIER98100501 Google Scholar
20. Yin, W. Y., G. H. Nan, and I. Wolff, "The combined effects of chiral operation in multilayered bianisotropic substrates," Progress In Electromagnetics Research, Vol. 20, 153-178, 1998.
doi:10.2528/PIER98020400 Google Scholar
21. Berginc, G., C. Bourrely, C. Ordenovic, and B. Torresani, "A numerical study of absorption by multilayered biperiodic A numerical study of absorption by multilayered biperiodic," Progress In Electromagnetics Research, Vol. 19, 199-222, 1998.
doi:10.2528/PIER97080400 Google Scholar
22. Shaarawi, A. M., I. M. Besieris, A. M. Attiya, and E. El-Diwany, "Reflection and transmission of an electromagnetic Xwave incident on a planar air-dielectric interface: Spectral analysis ," Progress In Electromagnetics Research, Vol. 30, 213-249, 2001.
doi:10.2528/PIER00042502 Google Scholar
23. Asole, F., L. Deias, and G. Mazza, "A flexible fullwave analysis of multilayered AMC using an aperture oriented approach," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2059-2072, 2007.
doi:10.1163/156939307783152885 Google Scholar
24. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for multilayer homogeneous coupling structure with ground shielding ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2073-2084, 2007.
doi:10.1163/156939307783152786 Google Scholar
25. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101 Google Scholar
26. Tah-Hsiung, C., "Polarization effects on microwave imaging of dielectric cylinder," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 9, 1366-1369, 1988.
doi:10.1109/22.3685 Google Scholar
27. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayerd cylinderical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305 Google Scholar
28. Rahmat-Samii, Y. and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley, 1999.
29. Tian, Y.-B. and J. Qian, "Ultra-conveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306776117090 Google Scholar
30. Zhai, Y. W., X. W. Shi, and Y. J. Zhao, "Optimized design of ideal and actual transformer based on improved micro-genetic algorithm ," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1761-1771, 2007. Google Scholar
31. Oraizi, H., "Application of the method of least squares to electromagnetic engineering problems," IEEE Antenna and Propagation Magazine, Vol. 48, No. 1, 50-75, 2006.
doi:10.1109/MAP.2006.1645560 Google Scholar
32. Michielssen, E., J.-M. Sajer, S. Ranjithan, and R. Mittra, "Design of lightweight, broad-band microwave absorbers using genetic algorithms," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 67, 1024-1031, 1993.
doi:10.1109/22.238519 Google Scholar
33. Oraizi, H. and A. Abdolali, "Combination of MLS, GA & CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials ," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.1002/mop.20005 Google Scholar
34. Cory, H. and C. Zach, "Wave propagation in metamaterial multilayered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005 Google Scholar