Vol. 3
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-04-17
Analysis of Nonlinear Oscillators with U Force by HE’S Energy Balance Method
By
Progress In Electromagnetics Research C, Vol. 3, 57-66, 2008
Abstract
In this letter,an application of energy balance method is applied to solve the nonlinear oscillators with un force. Comparison is made between the modification of harmonic balance method and energy balance method. The results reveal that the energy balance method is very effective and simple. Energy balance method is very effective and convenient and quite accurate to both linear and nonlinear physics and engineering problems.
Citation
Mehdi Akbarzade, Davoodi Ganji, and Mohammad Pashaei, "Analysis of Nonlinear Oscillators with U Force by HE’S Energy Balance Method," Progress In Electromagnetics Research C, Vol. 3, 57-66, 2008.
doi:10.2528/PIERC08032901
References

1. Nayfe, A. H. and D. T. Mook, Nonlinear Oscillations, Wiley, 1979.

2. He, J. H., "Preliminary report on the energy balance for nonlinear oscillations," Mechanics Research Communication, Vol. 29, 107-111, 2002.
doi:10.1016/S0093-6413(02)00237-9

3. Xu, L., "He’s parameter-expanding methods for strongly nonlinear scillators," Journal of Computation and Applied Mathematics, Vol. 207, 148-154, 2007.
doi:10.1016/j.cam.2006.07.020

4. Bender, C. M., S. Pinsky, and L. M. Simmons, "A new perturbative approach to nonlinear problems," Journal of Mathematical Physics, Vol. 30, No. 7, 1447-1455, 1989.
doi:10.1063/1.528326

5. He, J. H., "A note on delta-perturbation expansion method," Applied Mathematics and Mechanics, Vol. 23, No. 6, 634-638, 2002.
doi:10.1007/BF02437646

6. He, J. H., "Variational iteration method: A kind of nonlinear analytical technique: Some examples ," International Journal of Nonlinear Mechanics, Vol. 34, No. 4, 699-708, 1999.
doi:10.1016/S0020-7462(98)00048-1

7. Ganji, D. D., H. Tari, and H. Babazadeh, "The application of He’s variational iteration method to nonlinear equations arising in heat transfer," Physics Letters A, Vol. 363, No. 3, 213-217, 2007.
doi:10.1016/j.physleta.2006.11.005

8. Rafei, M., H. Daniali, and D. D. Ganji, "Variational iteration method for solving the epidemic model and the prey and predator problem," Applied Mathematics and Computation, Vol. 186, No. 2, 1701-1709, 2007.
doi:10.1016/j.amc.2006.08.077

9. Ganji, D. D. and A. Sadighi, "Application of He’s methods to nonlinear coupled systems of reaction-diffusion equations," International Journal of Nonlinear Sciences and Numerical Simulation , Vol. 7, No. 4, 411-418, 2006.

10. Xu, L, "Determination of limit cycle by He’s parameterexpanding method for strongly nonlinear oscillators," Journal of Sound and Vibration, Vol. 302, No. 1–2, 178-184, 2007.
doi:10.1016/j.jsv.2006.11.011

11. Xu, L., "Variational principles for coupled nonlinear Schro dinger equations," Physics Letters A , Vol. 359, No. 6, 627-629, 2006.
doi:10.1016/j.physleta.2006.07.026

12. Ganji, D. D., "The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer," Physics Letters A, Vol. 355, No. 4–5, 337-341, 2006.
doi:10.1016/j.physleta.2006.02.056

13. Rafei, M., D. D. Ganji, H. R. M. Daniali, and H. Pashaei, "Application of homotopy perturbation method to the RLW and generalized modified Boussinesq equations ," Physics Letters A, Vol. 364, 1-6, 2007.
doi:10.1016/j.physleta.2006.11.047

14. Rafei, M., D. D. Ganji, and H. Daniali, "Solution of the epidemic model by homotopy perturbation method," Applied Mathematics and Computation, Vol. 187, No. 2, 1056-1062, 2007.
doi:10.1016/j.amc.2006.09.019

15. Ganji, D. D. and M. Rafei, "Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method ," Physics Letters A, Vol. 356, No. 2, 131-137, 2006.
doi:10.1016/j.physleta.2006.03.039

16. Rafei, M. and D. D. Ganji, "Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method ," International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 3, 321-329, 2006.

17. He, J. H., "The homotopy perturbation method for nonlinear oscillators with discontinuities," Applied Mathematics and Computation, Vol. 151, No. 1, 287-292, 2004.
doi:10.1016/S0096-3003(03)00341-2

18. He, J. H., "A coupling method of a homotopy technique and a perturbation technique for non-linear problems ," International Journal of Non-linear Mechanics, Vol. 35, No. 1, 37-43, 2000.
doi:10.1016/S0020-7462(98)00085-7

19. Ozis, T. and A. Yildirim, "A comparative study of He’s homotopy perturbation method for determining frequencyamplitude relation of a nonlinear oscillator with discontinuities ," International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 2, 243-248, 2007.

20. He, J. H., "Bookkeeping parameter in perturbation methods," International Journal of Non-linear Sciences and Numerical Simulation , Vol. 2, No. 3, 257-264, 2001.

21. He, J. H., "A review on some new recently developed nonlinear analytical techniques," International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 1, No. 1, 51-70, 2000.

22. He, J. H., "Some asymptotic methods for strongly nonlinear equations ," International Journal of Modern Physics B, Vol. 20, No. 10, 1141-1199, 2006.
doi:10.1142/S0217979206033796

23. He, J. H., "Non-perturbative methods for strongly nonlinear problems," Dissertation, de-Verlag im Internet GmbH, Berlin, 2006.

24. He, J. H., "Some asymptotic methods for strongly nonlinear equations ," International Journal of Modern Physics B, Vol. 20, No. 10, 1141-1199, 2006.
doi:10.1142/S0217979206033796