Vol. 3
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-06-16
On Initialization of Ml DOA Cost Function for UCA
By
Progress In Electromagnetics Research M, Vol. 3, 91-102, 2008
Abstract
Maximum likelihood (ML) direction-of-arrival (DOA) estimation is essentially an optimization of multivariable nonlinear cost function. Since the final estimate is highly dependent on the initial estimate, an initialization is critical in nonlinear optimization. Alternating Projection (AP) initialization has been proposed as computationally efficient method for the initialization of the ML DOA cost function. In this paper, we propose a multi-dimensional (M-D) search scheme of uniform exhaustive search and improved exhaustive search. Improved exhaustive search is used to reduce the computational load of uniform exhaustive search. In the improved exhaustive search algorithm, the two-step procedure is applied to reduce the computational load of the uniform exhaustive search initialization scheme. In numerical results, it is shown that the performance of the proposed scheme is better than that of AP initialization.
Citation
Joon-Ho Lee, and Sang-Ho Jo, "On Initialization of Ml DOA Cost Function for UCA," Progress In Electromagnetics Research M, Vol. 3, 91-102, 2008.
doi:10.2528/PIERM08052702
References

1. Vorobyov, S . A., A. B. Gershman, and K. M. Wong, "Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays ," IEEE Trans. Signal Processing, Vol. 53, 34-43, Jan. 2005.
doi:10.1109/TSP.2004.838966

2. Chung, P.-J., "Stochastic maximum likelihood estimation under misspecified numbers of signals," IEEE Trans. Signal Processing, Vol. 55, 4726-4731, Sep. 2007.
doi:10.1109/TSP.2007.896057

3. Marano, S., V. Matta, P . Willett, and L. Tong, "Support-based and ML approaches to DOA estimation in a dumb sensor network," IEEE Trans. Signal Processing, Vol. 54, 1563-1567, Apr. 2006.
doi:10.1109/TSP.2006.870553

4. Rahamim, D., J. Tabrikian, and R. Shavit, "Source localization using vector sensor array in a multipath environment," IEEE Trans. Signal Processing, Vol. 52, 3096-3103, Nov. 2004.
doi:10.1109/TSP.2004.836456

5. Bethel, R. E. and K. L. Bell, "Maximum likelihood approach to joint array detection/estimation," IEEE Trans. Aerospace and Electronic Systems, Vol. 40, 1060-1072, Jul. 2004.
doi:10.1109/TAES.2004.1337474

6. Abramovich, Y. I., N. K. Spencer, and A. Y. Gorokhov, "Bounds on maximum likelihood ratio-part I: Application to antenna array detection-estimation with perfect wavefront coherence ," IEEE Trans. Signal Processing, Vol. 52, 1524-1536, Jun. 2004.
doi:10.1109/TSP.2004.827199

7. Wang, S., X. Guan, D. Wang, X. Ma, and Y. Su, "Fast calculation of wide-band responses of complex radar targets," Progress In Electromagnetics Research, Vol. 68, 186-196, 2007.
doi:10.2528/PIER06081702

8. Shi, Z.-G., S. Qiao, K. S. Chen, W.-Z. Cui, W. Ma, T. Jiang, and L.-X. Ran, "Ambiguity functions of direct chaotic radar employing microwave chaotic colpitts oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.
doi:10.2528/PIER07072001

9. Chen, X.-J. and X.-W. Shi, "An expression for the radar cross section computation of an electrically large perfect conducting cylinder located over a dielectric half-space ," Progress In Electromagnetics Research, Vol. 77, 267-272, 2007.
doi:10.2528/PIER07081702

10. Angell, A. J. and C. M. Rappaport, "Computational modeling analysis of radar scattering by clothing covered arrays of metallic body-worn explosive devices," Progress In Electromagnetics Research, Vol. 76, 285-298, 2007.
doi:10.2528/PIER07070905

11. Lee, K.-C., S. Ou, and C.-W. Huang, "Angular-diversity radar recognition of ships by transformation based approaches —Including noise effects ," Progress In Electromagnetics Research, Vol. 72, 145-158, 2007.
doi:10.2528/PIER07030901

12. S. S., P. D. Smith, J. S. Kot, and N. Nikolic, "Radar cross-section studies of spherical lens reflectors," Progress In Electromagnetics Research, Vol. 72, 325-337, 2007.
doi:10.2528/PIER07031206

13. Atteia, G. E., A. A. Shaalan, and K. A. Hussein, "Wideband partially-covered bowtie antenna for ground-penetrating-radars," Progress In Electromagnetics Research, Vol. 71, 211-226, 2007.
doi:10.2528/PIER07030101

14. Hussein, K. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures Progress In Electromagnetics Research,", Vol. 70, 225-246, 2007.
doi:10.2528/PIER07012101

15. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

16. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

17. Capineri, L., D. Daniels, P . Falorni, O. Lopera, and C. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

18. Razevig, V. V., I. Ivashov, A. P. Sheyko, I. A. Vasilyev, and A. V. Zhuravlev, "An example of holographic radar using at restoration works of historical building," Progress In Electromagnetics Research Letters, Vol. 1, 173-179, 2008.
doi:10.2528/PIERL07120603

19. Pinel, N., C. Bourlier, and J. Saillard, "Forward radar propagation over oil slicks on sea surfaces using the ament model with shadowing effect ," Progress In Electromagnetics Research, Vol. 76, 95-126, 2007.
doi:10.2528/PIER07062004

20. Qiao, S., Z.-G. Shi, T. Jiang, and L.-X. Ran, "A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization ," Progress In Electromagnetics Research, Vol. 75, 225-237, 2007.
doi:10.2528/PIER07052403

21. Cui, B., C. Wang, and X.-W. Sun, "Microstrip array double-antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
doi:10.2528/PIER06110902

22. Singh, A. K., P. Kumar, T. Chakravarty, G. Singh, and S. Bhooshan, "A novel digital beamformer with low angle resolution for vehicle tracking radar," Progress In Electromagnetics Research, Vol. 66, 229-237, 2006.
doi:10.2528/PIER06112102

23. Alyt, O. M., A. S. Omar, and A. Z. Elsherbeni, "Detection and localization of RF radar pulses in noise environments using wavelet packet transform and higher order statistics," Progress In Electromagnetics Research, Vol. 58, 301-317, 2006.
doi:10.2528/PIER05070204

24. El-Ocla, H., "On laser radar cross section of targets with large sizes for E-polarization," Progress In Electromagnetics Research, Vol. 56, 323-333, 2006.
doi:10.2528/PIER05052701

25. Chan, Y. K. and S. Y. Lim, "Syn thetic aperture radar (SAR) signal generation," Progress In Electromagnetics Research B, Vol. 1, 269-290, 2008.
doi:10.2528/PIERB07102301

26. El-Tokhy, M. A. and H. K. Mansour, "A 2.3-MW 16.7-MHz analog matched filter circuit for DS-CDMA wireless applications," Progress In Electromagnetics Research B, Vol. 5, 253-264, 2008.
doi:10.2528/PIERB08022406

27. Kundu, A. and A. Chakrabarty, "Fractionally spaced constant modulus algorithm for wireless channel equalization," Progress In Electromagnetics Research B, Vol. 4, 237-248, 2008.
doi:10.2528/PIERB08010802

28. Abdelaziz, A. A., "Impro ving the performance of an antenna array by using radar absorbing cover ," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503

29. Chen, Y.-L., C.-L. Ruan, and L. Peng, "A novel ultra-wideband bow-tie slot antenna in wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 1, 101-108, 2008.
doi:10.2528/PIERL07112302

30. Azmi, P . and N. Tavakkoli, "Narrow-band interference suppression in CDMA spread-spectrum communication systems using preprocessing based techniques in transform-domain," Progress In Electromagnetics Research Letters, Vol. 3, 141-150, 2008.
doi:10.2528/PIERL08022602

31. Bresler, Y. and A. Macovski, "Exact maximum likelihood parameter estimation of superimposed exponential signals in noise," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 34, Oct. 1986.

32. Ziskind, I. and M. Wax, "Maximum likelihood localization of multiple sources by alternating projection," IEEE Trans. Acoust., Speech, Signal Processing, Vol. 36, 1553-1560, Oct. 1988.