1. Fidlin, A., Nonlinear Oscillations in Mechanical Engineering, Springer-Verlag, 2006.
2. Dimarogonas, A. D. and S. Haddad, Vibration for Engineers, Prentice-Hall, 1992.
3. He, J. H., "Non-perturbative methods for strongly nonlinear problems," Dissertation, de-Verlag im Internet GmbH, 2006. Google Scholar
4. He, J. H., "Homotopy perturbation technique," Computer Methods in Applied Mechanics and Engineering, Vol. 178, 257-262, 1999.
doi:10.1016/S0045-7825(99)00018-3 Google Scholar
5. He, J. H., "The homotopy perturbation method for nonlinear oscillators with discontinuities," Applied Mathematics and Computation, Vol. 151, 287-292, 2004.
doi:10.1016/S0096-3003(03)00341-2 Google Scholar
6. Hashemi, S. H., H. R. M. Daniali, and D. D. Ganji, "Numerical simulation of the generalized Huxley equation by He's homotopy perturbation method," Applied Mathematics and Computation, Vol. 192, 157-161, 2007.
doi:10.1016/j.amc.2007.02.128 Google Scholar
7. Ganji, D. D. and A. Sadighi, "Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations," Int.J.Nonl.Sci.and Num.Simu., Vol. 7, No. 4, 411-418, 2006. Google Scholar
8. Nayfeh, A. H., Introduction to Perturbation Techniques, Wiley, 1981.
9. He, J. H., "Modified Lindstedt-Poincare methods for some strongly nonlinear oscillations, Part I: Expansion of a constant," International Journal Non-linear Mechanic, Vol. 37, 309-314, 2002.
doi:10.1016/S0020-7462(00)00116-5 Google Scholar
10. He, J. H., "Modified Lindstedt–Poincare methods for some strongly nonlinear oscillations, Part III: Double series expansion," International Journal Non-linear Science and Numerical Simulation, Vol. 2, 317-320, 2001. Google Scholar
11. Wang, S. Q. and J. H. He, "Nonlinear oscillator with discontinuity by parameter-expansion method," Chaos & Soliton and Fractals, Vol. 35, 688-691, 2008.
doi:10.1016/j.chaos.2007.07.055 Google Scholar
12. He, J. H., "Some asymptotic methods for strongly nonlinear equations," International Journal Modern Physic B, Vol. 20, 1141-1199, 2006.
doi:10.1142/S0217979206033796 Google Scholar
13. He, J. H., "Some new approaches to Duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique," Communications in Nonlinear Science and Numerical Simulation, Vol. 4, 81-82, 1999.
doi:10.1016/S1007-5704(99)90065-5 Google Scholar
14. He, J. H., "A review on some new recently developed nonlinear analytical techniques," International Journal of Nonlinear Science and Numerical Simulation, Vol. 1, 51-70, 2000. Google Scholar
15. He, J. H., "Determination of limit cycles for strongly nonlinear oscillators," Physic Review Letter, Vol. 90, 174-181, 2006. Google Scholar
16. Ganji, S. S., D. D. Ganji, Z. Z. Ganji, and S. Karimpour, "Periodic solution for strongly nonlinear vibration systems by energy balance method," Acta Applicandae Mathematicae, doi:10.1007/s10440-008-9283-6. Google Scholar
17. He, J. H., "Preliminary report on the energy balance for nonlinear oscillations," Mechanics Research Communications, Vol. 29, 107-118, 2002.
doi:10.1016/S0093-6413(02)00237-9 Google Scholar
18. He, J. H., "Variational iteration method — A kind of nonlinear analytical technique: Some examples," Int.J.Nonline ar Mech., Vol. 34, 699-708, 1999.
doi:10.1016/S0020-7462(98)00048-1 Google Scholar
19. Rafei, M., D. D. Ganji, H. Daniali, and H. Pashaei, "The variational iteration method for nonlinear oscillators with discontinuities," Journal of Sound and Vibration, Vol. 305, 614-620, 2007.
doi:10.1016/j.jsv.2007.04.020 Google Scholar
20. He, J. H. and X. H. Wu, "Construction of solitary solution and compaction-like solution by variational iteration method," Chaos, Solitons & Fractals, Vol. 29, 108-113, 2006.
doi:10.1016/j.chaos.2005.10.100 Google Scholar
21. Varedi, S. M., M. J. Hosseini, M. Rahimi, and D. D. Ganji, "He's variational iteration method for solving a semi-linear inverse parabolic Equation," Physics Letters A, Vol. 370, 275-280, 2007.
doi:10.1016/j.physleta.2007.05.100 Google Scholar
22. Hashemi, S. H. A., K. N. Tolou, A. Barari, and A. J. Choobbasti, "On the approximate explicit solution of linear and non-linear non-homogeneous dissipative wave equations," Istanbul Conferences, 2008. Google Scholar
23. He, J. H., "Variational approach for nonlinear oscillators," Chaos, Solitons and Fractals, Vol. 34, 1430-1439, 2007.
doi:10.1016/j.chaos.2006.10.026 Google Scholar
24. Naghipour, M., D. D. Ganji, S. H. A. Hashemi, and K. Jafari, "Analysis of non-linear oscillations systems using analytical approach," Journal of Physics, Vol. 96, 2008. Google Scholar
25. Wu, Y., "Variational approach to higher-order water-wave equations," Chaos & Solitons and Fractals, Vol. 32, 195-203, 2007.
doi:10.1016/j.chaos.2006.05.019 Google Scholar
26. Xu, L., "Variational approach to solitons of nonlinear dispersive K(m, n) equations," Chaos, Solitons & Fractals, Vol. 37, 137-143, 2008.
doi:10.1016/j.chaos.2006.08.016 Google Scholar
27. Inokuti, M., et al. "General use of the Lagrange multiplier in non–linear mathematical physics," Variational Method in the Mechanics of Solids, 1978. Google Scholar
28. "Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method," Chaos, Solitons & Fractals, Vol. 23, No. 2, 573-576, 2005.
doi:10.1016/j.chaos.2004.05.005 Google Scholar
29. He, J. H., "Variational principles for some nonlinear partial differential equations with variable coefficient," Chaos, Solitons and Fractals, Vol. 19, No. 4, 847-851, 2004.
doi:10.1016/S0960-0779(03)00265-0 Google Scholar
30. Wu, B. S., C. W. Lim, and L. H. He, "A new method for approximate analytical solutions to nonlinear oscillations of nonnatural systems," Nonlinear Dynamics, Vol. 32, 1-13, 2003.
doi:10.1023/A:1024223118496 Google Scholar
31. Nayfeh, A. H. and D. T. Mook, Nonlinear Oscillations, Wiley, 1979.
32. He, J. H., "Variational iteration method — Some recent results and new interpretations," Journal of Computational and Applied Mathematics, Vol. 207, 3-17, 2007.
doi:10.1016/j.cam.2006.07.009 Google Scholar
33. Dehghan, M. and F. Shakeri, "Solution of an integro-differential equation arising in oscillation magnetic fields using He's homotopy perturbation method," Progress In Electromagnetics Research, Vol. 78, 361-376, 2008.
doi:10.2528/PIER07090403 Google Scholar
34. Belendez, A., C. Pascual, S. Gallego, M. Ortuno, and C. Neipp, "Application of a modified He's homotopy perturbation method to obtain higher-order approximations of an force nonlinear oscillator," Physics Letters A, Vol. 371, 421, 2007.
doi:10.1016/j.physleta.2007.06.042 Google Scholar
35. Belendez, A., C. Pascual, M. Ortuno, C. Neipp, T. Belendez, and S. Gallego, "Application of a modified He's homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities," Nonlinear Analysis: Real World Applications, 2007. Google Scholar
36. Ganji, S. S., D. D. Ganji, H. Babazadeh, and S. Karimpour, "Variational approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic-quintic Duffing oscillators," Progress In Electromagnetics Research M, Vol. 4, 23-32, 2008.
doi:10.2528/PIERM08061007 Google Scholar
37. Pashaei, H., D. D. Ganji, and M. Akbarzade, "Application of energy balance method for strongly nonlinear oscillators," J. Progress In Electromagnetics Research M, Vol. 2, 47-56, 2008.
doi:10.2528/PIERM08031602 Google Scholar
38. Akbarzade, M., D. D. Ganji, and H. Pashaei, "Progress analysis of nonlinear oscillators with force by He's energy balance method," J.Pr ogress In Electromagnetics Research C, Vol. 3, 57-66, 2008.
doi:10.2528/PIERC08032901 Google Scholar
39. Vahdati, H. and A. Abdipour, "Nonlinear stability analysis of microwave oscillators using the periodic averaging method," Progress In Electromagnetics Research, Vol. 79, 179-193, 2008.
doi:10.2528/PIER07100101 Google Scholar