Vol. 5
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2008-10-30
Dielectric Permittivity Measuring Technique of Film-Shaped Materials at Low Microwave Frequencies from Open-End Coplanar Waveguide
By
Progress In Electromagnetics Research C, Vol. 5, 57-70, 2008
Abstract
This paper presents a broad-band technique for measuring the dielectric permittivity of isotropic nonmagnetic film-shaped materials at low microwave frequencies. The material under test is the substrate of an open-end coplanar waveguide (CPW) used as sample-cell. The dielectric permittivity is extracted from S11 reflection parameter measurement of the open-end CPW cell using analytical relationships, which allow to decrease the computation time with respect to any full-wave electromagnetic method. Vector network analyzer (VNA) and high-quality on-coplanar test fixture are used for the measurements between 300 kHz and 3 GHz. Measured εr data for several nonmagnetic low-loss materials are presented. This technique shows a good agreement between measured and predicted data for the real permittivity over 0.05 GHz-3GHz frequency range.
Citation
Juan Hinojosa, "Dielectric Permittivity Measuring Technique of Film-Shaped Materials at Low Microwave Frequencies from Open-End Coplanar Waveguide," Progress In Electromagnetics Research C, Vol. 5, 57-70, 2008.
doi:10.2528/PIERC08100101
References

1. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies ," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520

2. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005

3. Queffelec, P., Ph. Gelin, J. Gieraltowski, and J. Loaec, "A microstrip device for the broad-band simultaneous measurement of complex permeability and permittivity," IEEE Trans. Magn., Vol. 30, No. 2, 224-231, 1994.
doi:10.1109/20.312262

4. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement ," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103

5. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

6. Challa, R., -K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

7. Stewart, J. W. and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," J. of Electromagn. Waves and Appl., Vol. 20, 2037-2052, 2006.
doi:10.1163/156939306779322693

8. Hyde IV, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405

9. Hinojosa, J., "S-parameter broadband measurements on-coplanar and fast extraction of the substrate intrinsic properties ," IEEE Microw. and Wireless Comon. Lett., Vol. 11, No. 2, 80-82, 2001.
doi:10.1109/7260.914309

10. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801

11. Moradi, G. and A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
doi:10.2528/PIER07080201

12. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," J. of Electromagn. Waves and Appl., Vol. 22, 555-562, 2008.
doi:10.1163/156939308784150272

13. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

14. Wu, Y. Q., Z. Tang, Y. Xu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

15. Boughriet, A.-H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032

16. Pannel, R. M. and B. W. Jervis, "Two simple methods for the measurement of dielectric permittivity of low-loss microstrip substrates ," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 4, 383-386, 1981.
doi:10.1109/TMTT.1981.1130362

17. Hinojosa, J., "Permittivity characterization from open-end microstrip line measurements," Microw. Opt. Tecnol. Lett., Vol. 49, No. 6, 1371-1374, 2007.
doi:10.1002/mop.22410

18. Zhang, J. and T. Y. Hsiang, "Dispersion characteristics of coplanar waveguides at subterahertz frequencies," J. of Electromagn. Waves and Appl., Vol. 20, 1411-1417, 2006.
doi:10.1163/156939306779276767

19. Dib, N., "Comprehensive study of CAD models of several coplanar waveguide (CPW) discontinuities ," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 2, 69-76, 2005.
doi:10.1049/ip-map:20045039

20. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electron. Lett., Vol. 20, No. 4, 179-181, 1984.
doi:10.1049/el:19840120

21. Denlinger, E., J., "Losses of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 6, 513-522, 1980.
doi:10.1109/TMTT.1980.1130112

22. Rosloniec, S., Algorithms for Computer-aided Design of Linear Microwave Circuits, Artech House, MA, 1990.