1. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces—A review," Proceedings of the IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352 Google Scholar
2. Oraizi, H. and M. Afsahi, "Analysis of planar dielectric multilayers as FSS by transmission line transfer matrix method (TLTMM)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
doi:10.2528/PIER07042401 Google Scholar
3. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. on Antennas and Propagat, Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553 Google Scholar
4. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley Interscience, 2006.
5. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101 Google Scholar
6. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multilayered frequency selective surface with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803 Google Scholar
7. Cory, H. and C. Zach, "Wave propagation in metamaterial multilayered structures," Microwave Opt. Technol. Lett., Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005 Google Scholar
8. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2001. Google Scholar
9. Oraizi, H. and M. Afsahi, "Determination of correct values for propagation constant, intrinsic impedance and refraction index of metamaterials," IEEE Applied Electromagnetic Conference, AEMC, 1-4, Kolkata, India, 2007. Google Scholar
10. Oraizi, H. and M. Afsahi, "Determination of correct values for propagation constant, intrinsic impedance and refraction index of metamaterials," IEEE Int. Conf. Applied Electromagnetic, Vol. 1, 1-4, India, 2007. Google Scholar
11. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory. Tech., Vol. 47, No. 18, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
13. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
14. Cory, H., S. Shiran, and M. Heilper, "An iterative method for calculating the shielding effectiveness and light Transmittance of multilayered media," IEEE Trans. Electrogagnetic Compatibility, Vol. 35, No. 4, 451-456, 1993.
doi:10.1109/15.247859 Google Scholar
15. Gerardin, J. and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microwave and Optical Technology Letters, Vol. 34, No. 6, 409-411, 2002.
doi:10.1002/mop.10478 Google Scholar
16. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
17. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction of canonical targets using genetic algorithm synthesized RAM," IEEE Trans. on Antennas Propagat., Vol. 48, 1594-1606, 2000.
doi:10.1109/8.899676 Google Scholar
18. Mackay, A. J., "The theory and design of provably optimal bandwidth radar absorbent materials (RAM) using dispersive structures and/or frequency selective surfaces (FSS)," ICEAA Int. Conf. Electromagnetics in Advanced Applications, 3-8, Torino, Italy, 2007. Google Scholar
19. Terracher, F., G. Berginc, T.-C. Optronique, and R. Guyancourt, "Thin electromagnetic absorber using frequency selective surfaces," IEEE Int. Conf. Antennas Propagat. Society, 846-849, Salt Lake, USA, 2000. Google Scholar
20. Besso, P., M. Bozzi, L. Perregrini, L. Salghetti Drioli, and W. Nickerson, "Deep space antenna for Rosetta mission: Design and testing of the S/X-band dichroic mirror," IEEE Trans. on Antennas and Propagat, Vol. 51, No. 3, 388-394, 2003.
doi:10.1109/TAP.2003.808528 Google Scholar
21. Besso, P, M. Bozzi, M. Formaggi, S. Germani, and L. Perregrini, "S/X/Ka-band dichroic mirrors for deep-space antennas," IEEE Int. Symp. Antennas Propagat., Vol. 4, 372-375, 2005. Google Scholar
22. Bertoni, H., L.-H. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by periodic dielectric layer," IEEE Transactions on Antennas Propagat., Vol. 37, No. 1, 78-83, 1989.
doi:10.1109/8.192167 Google Scholar
23. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, 1995.
24. Wu, T. K., "Cassini frequency selective surface development," J. Electromagn. Waves Applicat., Vol. 8, No. 12, 1547-1561, 1994. Google Scholar
25. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Transactions on Antennas Propagat., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329 Google Scholar