Vol. 9
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-07-15
Design of 3 to 5 GHz CMOS Low Noise Amplifier for Ultra-Wideband (UWB) System
By
Progress In Electromagnetics Research C, Vol. 9, 25-34, 2009
Abstract
A single-stage ultra-wideband (UWB) CMOS low noise amplifier (LNA) employing interstage matching inductor on conventional cascode inductive source degeneration structure is presented in this paper. The proposed LNA is implemented in 0.18 μm CMOS technology for a 3 to 5 GHz ultra-wideband system. By careful optimization, an interstage inductor can increase the overall broadband gain while maintaining a low level of noise figure of an amplifier. The fabricated prototype has a measured power gain of +12.7 dB, input return loss of 18 dB, output return loss of 3 dB, reverse isolation of 35 dB, noise figure of 4.5 dB and input IP3 of -1 dBm at 4 GHz, while consuming 17 mW of DC dissipation at a 1.8 V supply voltage.
Citation
Sew-Kin Wong, Fabian Kung Wai Lee, Siti Maisurah, Mohd Nizam Bin Osman, and See Jin Hui, "Design of 3 to 5 GHz CMOS Low Noise Amplifier for Ultra-Wideband (UWB) System," Progress In Electromagnetics Research C, Vol. 9, 25-34, 2009.
doi:10.2528/PIERC09062202
References

1. FCC "Final rule of the federal communications commission, 47 CFR Part 15, Sec. 503 ," Federal Register, Vol. 67, No. 95, May 2002.

2. Kim, C. W., M. S. Kang, P. T. Anh, and S. G. Lee, "An ultra-wideband CMOS low noise amplifier for 3-5 GHz UWB system," IEEE Journal of Solid State Circuits, Vol. 40, No. 2, 544-547, Feb. 2005.
doi:10.1109/JSSC.2004.840951

3. Heydari, P. and D. Lin, "A performance optimized CMOS distributed LNA for UWB receivers," Proc. Int. Custom Integrated Circuits Conf., 330-333, Sep. 2005.

4. Chen, K. H., J. H. Lu, B. J. Chen, and S. L. Liu, "An ultra-wide-band 0.4-10 GHz LNA in 0.18 μm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 54, No. 3, 217-221, Mar. 2007.
doi:10.1109/TCSII.2006.886880

5. Kim, S. S., Y. S. Lee, and T. Y. Yun, "High-gain wideband cmos low noise amplifier with two-stage cascode and simplified chebyshev filter," ETRI Journal, Vol. 29, No. 5, 670-672, Oct. 2007.
doi:10.4218/etrij.07.0207.0025

6. Dorafshan, A. and M. Soleimani, "High-gain CMOS low noise amplifier for ultra wide-band wireless receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.
doi:10.2528/PIERC08090903

7. Ismail, A. and A. Abidi, "A 3 to 10 GHz LNA using a wideband LC-ladder matching network," Proc. ISSCC Digital Tech., 384-385, 2004.

8. Kim, H. S., X. P. Li, and M. Ismail, "A 2.4 GHz CMOS low noise amplifier using an inter-stage matching inductor," Proc. Midwest Symposium on Circuits and Systems, 1040-1042, 1999.

9. Zhang, C., D. Huang, and D. Lou, "Optimization of cascode CMOS low noise amplifier using interstage matching network," Proc. Electron. Devices and Solid State Circuit Conf., 465-468, Dec. 2003.

10. Thomas, H. L., The Design of CMOS Radio-frequency Integrated Circuits, Cambridge University Press, U.K., 2004.

11. Razavi, B., Design of Analog CMOS Integrated Circuits, McGraw Hill, New York, 2001.

12. Andersson, S., C. Svensson, and O. Drugge, "Wideband LNA for a multistandard wireless receiver in 0.18 μm process," Proc. European Solid-state Circuits Conf., 655-658, Sep. 2003.