Vol. 10
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-12-01
An External Cloak with Arbitrary Cross Section Based on Complementary Medium
By
Progress In Electromagnetics Research M, Vol. 10, 13-24, 2009
Abstract
Electromagnetic cloak is a device which makes an object "invisible" for electromagnetic irradiation in a certain frequency range. Material parameters for the complementary medium-assisted external cylindrical cloak with arbitrary cross section are derived based on combining the concepts of complementary media and transformation optics. It can make the object with arbitrary shape outside the cloaking domain invisible, as long as an "antiobject" is embedded in the complementary layer. The external cloaking effect has been verified by full-wave simulation. Moreover, the effect of metamaterial losses is studied, and small losses less than or equal to 0.01 do not disturb the cloaking effect.
Citation
Chengfu Yang, Ming Huang, Jingjing Yang, Zhe Xiao, and Jinhui Peng, "An External Cloak with Arbitrary Cross Section Based on Complementary Medium," Progress In Electromagnetics Research M, Vol. 10, 13-24, 2009.
doi:10.2528/PIERM09110514
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

4. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, No. 5910, 110-112, 2009.
doi:10.1126/science.1166332

5. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949

6. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials, Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461

7. Alu, A. and N. Engheta, "Achieving transparency with plasmonic metamaterial coatings," Phys. Rev. E, Vol. 72, No. 1, 016623, 2005.
doi:10.1103/PhysRevE.72.016623

8. Alu, A. and N. Engheta, "Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking," New J. Phys, Vol. 10, 115036, 2008.
doi:10.1088/1367-2630/10/11/115036

9. Miller, D. A. B., "On perfect cloaking," Opt. Express, Vol. 14, No. 25, 12457-12466, 2006.
doi:10.1364/OE.14.012457

10. Vasquez, F. G., G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Optics Express, Vol. 17, No. 17, 14800-14805, 2009.
doi:10.1364/OE.17.014800

11. Alitalo, P., O. Luukkonen, L. JylhÄa, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 416-424, 2008.
doi:10.1109/TAP.2007.915469

12. Nicorovici, N.-A. P., G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express, Vol. 15, No. 10, 6314-6323, 2007.
doi:10.1364/OE.15.006314

13. Milton, G. W., N.-A. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob, "Solutions in folded geometries, and associated cloaking due to anomalous resonance," New J. Phys., Vol. 10, 115021, 2008.
doi:10.1088/1367-2630/10/11/115021

14. Alitalo, P. and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Materialstoday, Vol. 12, No. 3, 22-29, 2009.

15. Bruno, O. P. and S. Lintner, "Superlens-cloaking of small dielectric bodies in the quasistatic regime," J. Appl. Phys., Vol. 102, No. 12, 124502, 2007.
doi:10.1063/1.2821759

16. Lai, Y., H. Y. Chen, Z. Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, No. 9, 093901, 2009.
doi:10.1103/PhysRevLett.102.093901

17. Li, C. and F. Li, "Two-dimensional electromagnetic cloaks with arbitrary geometries," Optics Express, Vol. 16, No. 7, 13414-13420, 2008.
doi:10.1364/OE.16.013414

18. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express,, Vol. 14, No. 21, 9794, 2006.
doi:10.1364/OE.14.009794

19. Yang, J. J., M. Huang, C. F. Yang, Z. Xiao, and J. H. Peng, "Metamaterial electromagnetic concentrators with arbitrary geometries," Optics Express, Vol. 17, No. 22, 19656-19661, 2009.
doi:10.1364/OE.17.019656