1. Nguyen, C., Analysis Methods for RF, Microwave, and Millimeter-wave Planar Transmission Line Structures, John Wiley and Sons, 2000.
doi:10.1002/0471200670
2. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, John Wiley and Sons, 2001.
doi:10.1002/0471224758
3. Shih, Y. C., "Broadband characterization of conductor-backed coplanar waveguide using accurate on-wafer measurement techniques," Microwave Journal, Vol. 34, 95-105, 1991. Google Scholar
4. Shih, Y. C. and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronic Letters, Vol. 18, 538-540, 1982.
doi:10.1049/el:19820365 Google Scholar
5. Ghione, G. and C. U. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronic Letters, Vol. 19, 734-735, 1983.
doi:10.1049/el:19830500 Google Scholar
6. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, 260-267, 1987.
doi:10.1109/TMTT.1987.1133637 Google Scholar
7. Cheng, K. K. M. and J. K. A. Everard, "A new technique for the quasi-TEM analysis of conductor-backed coplanar waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1589-1592, 1993.
doi:10.1109/22.245682 Google Scholar
8. Tien, C. C., C. K. C. Tzuang, S. T. Peng, and C. C. Chang, "Transmission characteristics of finite-width conductor-backed coplanar waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 9, 1616-1624, 1993.
doi:10.1109/22.245687 Google Scholar
9. Neto, A. G., C. S. D. Rocha, D. Bajon, and H. Baudrand, "Analysis of the conductor-backed coplanar waveguide by an alternative formulation of the transverse resonance technique," SBMO/IEEE MTT-S Int., 851-855, 1995.
doi:10.1109/SBMOMO.1995.509726 Google Scholar
10. Huang, J. F. and C. W. Kuo, "More investigations of leakage and nonleakage conductor-backed coplanar waveguide," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 257-261, 1998.
doi:10.1109/15.709424 Google Scholar
11. Hotta, M., Y. Qian, and T. Itoh, "Efficient FDTD analysis of conductor-backed CPW's with reduced leakage loss," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1585-1587, 1999.
doi:10.1109/22.780412 Google Scholar
12. Yildiz, C. and M. Turkmen, "Synthesis formulas for conductor-backed coplanar waveguide," Microwave and Optical Technology Letters, Vol. 50, No. 4, 1115-1117, 2008.
doi:10.1002/mop.23304 Google Scholar
13. Price, K., "Differential evolution: A fast and simple numerical optimizer," IEEE North American Fuzzy Info. Process. Conf., 524-527, Berkeley, CA, 1996. Google Scholar
14. Storn, R. and K. Price, "Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328 Google Scholar
15. Michalski, K. A., "Electromagnetic imaging of circular cylindrical conductors and tunnels using a differential evolution algorithm," Microwave and Optical Technology Letters, Vol. 27, 330-334, 2000.
doi:10.1002/1098-2760(20001205)27:5<330::AID-MOP13>3.0.CO;2-H Google Scholar
16. Qing, A., "Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy," IEEE Transactions on Antennas and Propagation, Vol. 51, 1251-1262, 2003.
doi:10.1109/TAP.2003.811492 Google Scholar
17. Luo, X. F., P. T. Teo, A. Qing, and C. K. Lee, "Design of double-square-loop frequency-selective surfaces using differential evolution strategy coupled with equivalent-circuit model," Microwave and Optical Technology Letters, Vol. 44, 159-162, 2005.
doi:10.1002/mop.20575 Google Scholar
18. Luo, X. F., A. Qing, and C. K. Lee, "Application of the differential-evolution strategy to the design of frequency-selective surfaces," Int. J. RF and Microwave CAE, Vol. 15, 173-180, 2005. Google Scholar
19. Yildiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave and Optical Technology Letters, Vol. 48, 1133-1137, 2006.
doi:10.1002/mop.21559 Google Scholar
20. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "New and accurate synthesis formulas for multilayer homogeneous coupling structure," Microwave and Optical Technology Letters, Vol. 49, 2486-2489, 2007.
doi:10.1002/mop.22743 Google Scholar
21. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for multilayer homogeneous coupling structure with ground shielding," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2073-2084, 2007.
doi:10.1163/156939307783152786 Google Scholar
22. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Synthesis formulas for microcoplanar striplines," Microwave and Optical Technology Letters, Vol. 50, 2884-2888, 2008.
doi:10.1002/mop.23823 Google Scholar
23. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "New and accurate synthesis formulas for asymmetric coplanar stripline with an infinitely wide strip," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 50, 109-116, 2009.
doi:10.1007/s10762-008-9443-9 Google Scholar
24. Zeland Software Inc., IE3D, Version 12.12, www.zeland.com, 2007.