Vol. 13
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-06-16
Towards a Better Excitation of the Surface Wave
By
Progress In Electromagnetics Research M, Vol. 13, 17-28, 2010
Abstract
In the field of maritime surveillance, HF surface wave radars seem to be considered as an optimum and low cost solution. Nevertheless, the commonly used radiating elements of those radars are not yet able to only launch surface waves. We aim to design a specific radiating element optimized for exciting such waves. The first step of such an issue is to set thoroughly the problem. In this paper, surface waves on the boundary between two dielectric media are considered. Kistovich decomposition is applied in order to discuss the influence of the Zenneck wave on the field excited at the sea surface. It is shown that Zenneck approach and Norton's one are not contradictory. Above all, we point out that, using Kistovich decomposition to design radiating elements, we can expect a significant improvement of the surface wave intensity.
Citation
Luca Petrillo Florent Jangal Muriel Darces Jean-Louis Montmagnon Marc Hélier , "Towards a Better Excitation of the Surface Wave," Progress In Electromagnetics Research M, Vol. 13, 17-28, 2010.
doi:10.2528/PIERM10041409
http://www.jpier.org/PIERM/pier.php?paper=10041409
References

1. Sevgi, L., A. Ponsford, and H. C. Chan, "An integrated maritime surveillance system based on high-frequency surface-wave radars. 1. Theoretical background and numerical simulations," IEEE Antennas and Propagation Magazine, Vol. 43, No. 4, 28-43, 2001.
doi:10.1109/74.951557

2. Jangal, F., S. Saillant, and M. Helier, "Ionospheric clutter mitigation using one-dimensional or two-dimensional wavelet processing," IET Radar, Sonar and Navigation, Vol. 3, No. 2, 112-121, 2009.
doi:10.1049/iet-rsn:20070095

3. Moutray, R. E. and A. M. Ponsford, "Integrated maritime surveillance: Protecting national sovereignty," Proceedings of the International Radar Conference 2003, 385-388, Sep. 3-5, 2003.

4. Wait, J. R., "The ancient and modern history of EM ground-wave propagation ," IEEE Antenna and Propagation Magazine, Vol. 40, No. 5, 7-24, 1998.
doi:10.1109/74.735961

5. Collin, R. E., "Hertzian dipole radiating over a lossy earth or sea: some early and late 20th-century controversies," IEEE Antennas and Propagation Magazine, Vol. 46, No. 2, 64-79, 2004.
doi:10.1109/MAP.2004.1305535

6. Banos, A., Dipole Radiation in the Presence of a Conducting Halfspace, Pergamon Press, Oxford, 1966.

7. Norton, K. A., The physical reality of space and surface waves in the radiation field of radio antenna, Procedings of the IRE, Vol. 25, No. 9, 1192-1202, 1937.

8. Datsko, V. N. and A. A. Kopylov, "On surface electromagnetic waves," Physics-Uspekhi, Vol. 51, No. 1, 101-102, 2008.
doi:10.1070/PU2008v051n01ABEH006208

9. Kukushkin, A. V., "On the existence and physical meaning of the Zenneck wave," Physics-Uspekhi, Vol. 52, No. 7, 755-756, 2009.
doi:10.3367/UFNe.0179.200907j.0801

10. Fock, V., "Diffraction of radio waves around the Earth's surface," Acad. Sci. USSR. J. Phys., Vol. 9, 255-266, 1945.

11. Burrows, C. R., "The surface wave in radio propagation over plane Earth," Proceedings of the IRE, Vol. 25, 219-229, 1937.
doi:10.1109/JRPROC.1937.228927

12. Kistovich, Y. V., "Possibility of observing Zenneck surface waves in radiation from a source with a small vertical aperture," Sov. Phys. Tech. Phys., Vol. 34, No. 4, 391-394, 1989.