Vol. 13
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-06-16
Rigorous 3D Vectorial Gaussian Beam Modeling of Demultiplexing Performance of Virtually-Imaged-Phased-Arrays
By
Progress In Electromagnetics Research M, Vol. 13, 1-16, 2010
Abstract
We extend our previously-derived generalized closed-form representation for spectral dispersing performance of the Virtually-Imaged-Phased-Array (VIPA) based on a 3D vectorial Gaussian beam formulation to demultiplexing application. To analyze VIPA in the demultiplexer scheme, a spherical lens is added after the VIPA, so that the device plane is superimposed on the focal plane of the lens. The calculated output profile at previous step is reformulated in a matrix form in this step. Finally, the derived closed-form is simulated, and the numerical outcomes are compared with the previous results. The 3D output radiation of VIPA demultiplexer pattern is also depicted and found to be very intuitive and promising for some applications especially WDM demultiplexer and optical Code Division Multiple Access (CDMA).
Citation
Arash Mokhtari Amir Shishegar , "Rigorous 3D Vectorial Gaussian Beam Modeling of Demultiplexing Performance of Virtually-Imaged-Phased-Arrays," Progress In Electromagnetics Research M, Vol. 13, 1-16, 2010.
doi:10.2528/PIERM10041604
http://www.jpier.org/PIERM/pier.php?paper=10041604
References

1. Lipson, J., W. J. Minford, E. J. Murphy, T. C. Rice, R. A. Linke, and G. T. Harvey, "A six-channel wavelength multiplexer and demultiplexer for single mode systems," IEEE J. Lightwave Technol., Vol. 3, 1159-1163, 1985.
doi:10.1109/JLT.1985.1074292

2. Okamoto, K., "Recent progress of integrated optics planar lightwave circuits," Opt. Quantum Electron., Vol. 31, 107-129, 1999.
doi:10.1023/A:1006975415469

3. Park, S. J., C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, "Fiber-to-the-Home services based on wavelength-division-multiplexing passive optical networks," IEEE J. Lightwave Technol., Vol. 22, No. 11, 2582-2591, 2004.
doi:10.1109/JLT.2004.834504

4. Shirasaki, M., "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer," Optics Letters, Vol. 21, 366-368, 1996.
doi:10.1364/OL.21.000366

5. Shirasaki, M., "Chromatic-dispersion compensator using virtually imaged phased array," IEEE Photon. Technol. Lett., Vol. 9, 1598-1560, 1997.
doi:10.1109/68.643280

6. Shirasaki, M., "Compensation of chromatic dispersion and dispersion slope using a virtually imaged phased array," OFC'01, 2001.

7. Shirasaki, M., A. N. Akhter, and C. Lin, "Virtually imaged phased array with graded reflectivity," IEEE Photon. Technol. Lett., Vol. 11, 1443-1445, 1999.
doi:10.1109/68.803073

8. Leaird, D. E. and A. M. Weiner, "Femtosecond direct space-to-time pulse shaping ," IEEE J. of Quantum Electronics, Vol. 37, No. 4, 494-504, 2001.
doi:10.1109/3.914397

9. Etemad, S., T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin, "Optical-CDMA incorporating phase coding of coherent frequency bins: Concept, simulation, experiment," OFC'04, FG5, 2004.

10. Xiao, S., J. D. McKinney, and A. M.Weiner, "Photonic microwave arbitrary waveform generation using a vipa direct space-to-time pulse shaper," IEEE Photon. Technol. Lett., Vol. 16, No. 8, 1936-1938, 2004.
doi:10.1109/LPT.2004.831324

11. Lee, G. and A. M. Weiner, "Programmable optical pulse burst manipulation using a VIPA based fourier transform pulse shaper," IEEE J. Lightwave Technol., Vol. 23, No. 11, 3916, 2005.
doi:10.1109/JLT.2005.857739

12. Yang, L., "Analytical treatment of virtual image phase array," OFC'02, 321-322, Anaheim, CA, 2002.

13. Vega, A., A. M.Weiner, and C. Lin, "Generalized grating equation for virtually-imaged phased-array spectral dispersers," Appl. Opt., Vol. 42, No. 20, 4152-4155, 2003.
doi:10.1364/AO.42.004152

14. Xiao, S., A. M.Weiner, and C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory," IEEE J. of Quantum Electronics, Vol. 40, No. 4, 420-426, 2004.
doi:10.1109/JQE.2004.825210

15. Xiao, S., A. M.Weiner, and C. Lin, "Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA)," IEEE J. Lightwave Technol., Vol. 23, No. 3, 1456, 2005.
doi:10.1109/JLT.2005.843531

16. Mokhtari, A. and A. A. Shishegar, "A rigorous vectorial Gaussian beam modeling of virtually-imaged-phased-arrays," AOE'07, 514-516, 2007.

17. Mokhtari, A. and A. A. Shishegar, "Rigorous vectorial Gaussian beam modeling of spectral dispersing performance of virtually imaged phased arrays," J. Opt. Soc. Am. B, Vol. 26, No. 2, 272-278, 2009.
doi:10.1364/JOSAB.26.000272

18. Goodman, J. W., Introduction to Fourier Optics, 77-96, McGraw-Hill, San Francisco, CA, 1968.

19. Haus, H. A., Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, 1984.

20. Ramo, S., "Fields and Waves in Communication Electronics," John Wiley & Sons, 1994.

21. Verdeyen, J. T., "Laser Electronics," Prentice Hall, 1995.

22. Arnaud, J. A. and H. Kogelnik, "Gaussian light beams with general astigmatism," Applied Optics, Vol. 8, No. 8, 1687-1694, 1969.
doi:10.1364/AO.8.001687

23. Iizuka, K., Elements of Photonics, Fabry-perot Resonator Beams and Radiation Pressure, Vol. 1, Chap. 3, 181, Wiley Interscience, 2002.

24. Prucnal, P. R., Optical Code Division Multiple Access: Fundamentals and Applications, CRC Press, New York, 2006.