Vol. 13
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-10
Analytic Expression for the Effective Plasma Frequency in One-Dimensional Metallic-Dielectric Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010
Abstract
In this work, an analytic expression to define the effective plasma frequency of an one-dimensional periodic system containing alternating dielectric and metallic slabs is proposed. Such metallic elements are considered to have a Drude dielectric function. The effective plasma frequency is obtained as a simple average of the constitutive materials, and its cutoff frequency for the propagating modes is compared with band structure calculations. We also explore the role of absorption in the transparency frequency cutoff.
Citation
Jesus Manzanares-Martinez, "Analytic Expression for the Effective Plasma Frequency in One-Dimensional Metallic-Dielectric Photonic Crystal," Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010.
doi:10.2528/PIERM10061905
References

1. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, No. 14, 2480-2483, 1996.
doi:10.1103/PhysRevLett.76.2480

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer, Berlin, 1988.

4. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995.

5. Low, K. L., M. Z. MatJarfi, and S. A. Khan, "Effective plasma frequency for two-dimensional metallic photonic crystals," Progress In Electromagnetics Research M, Vol. 12, 67-79, 2010.
doi:10.2528/PIERM10031505

6. Jiang, T., L. Shen, X. Zhang, and L. X. Ran, "High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces ," Progress In Electromagnetics Research M, Vol. 8, 91-102, 2009.
doi:10.2528/PIERM09062901

7. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta, "Optical properties of a dielectric-metallic superlattice: The complex photonic bands," Phys. Lett. A, Vol. 326, 273-280, 2004.
doi:10.1016/j.physleta.2004.03.070

8. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224

9. Apostol, M. and G. Vaman, "Plasmons and diffraction of an electromagnetic plane wave by a metallic sphere," Progress In Electromagnetics Research, Vol. 98, 97-118, 2009.
doi:10.2528/PIER09100103

10. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.
doi:10.2528/PIER08080501

11. Pokrovsky, A. L. and A. L. Efros, "Electrodynamics of metallic photonic crystals and the problem of left-handed materials," Phys. Rev. Lett., Vol. 89, No. 9, 093901-093904, 2002.
doi:10.1103/PhysRevLett.89.093901

12. Maslovski, S. I., S. A. Tetryakov, and P. A. Belov, "Wire media with negative effective permittivity: A quasi-static model," Microwave Opt. Technol. Lett., Vol. 35, No. 1, 47-51, 2002.
doi:10.1002/mop.10512

13. Markos, P. and C. M. Soukoulis, "Absorption losses in periodic arrays of thin metallic wires," Opt. Lett., Vol. 28, 846-848, 2003.
doi:10.1364/OL.28.000846

14. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech-House Publishing, New-York, 2004.

15. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter, Vol. 10, No. 22, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

16. Smith, D. R., D. C. Vier, W. Padilla, C. S. Nemat-Nasse, and S. Shultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714

17. Sigalas, M. M., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, No. 16, 11744-11751, 1995.
doi:10.1103/PhysRevB.52.11744

18. Brand, S., R. A. Abram, and M. A. Kaliteevski, "Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods," Phys. Rev. B, Vol. 75, No. 3, 035102-035109, 2007.
doi:10.1103/PhysRevB.75.035102

19. Sarychev, A. K. and V. M. Shalaev, "Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites," Phys. Rep., Vol. 335, 275-371, 2000.
doi:10.1016/S0370-1573(99)00118-0

20. Pimenov, A. and A. Loidl, "Experimental demonstration of artificial dielectrics with a high index of refraction," Phys. Rev. B, Vol. 74, No. 19, 193102-193105, 2006.
doi:10.1103/PhysRevB.74.193102

21. Pimenov, A., M. Biberacher, D. Ivannikov, A. Loidl, A. A. Mukhin, Y. G. Goncharov, and A. M. Balbashov, "Scaling of terahertz conductivity at the metal-insulator transition in doped manganites ," Phys. Rev. B, Vol. 73, No. 22, 220407-220410, 2006.
doi:10.1103/PhysRevB.73.220407

22. Pimenov, A. and A. Loidl, "Conductivity and permittivity of two-dimensional metallic photonic crystals," Phys. Rev. Lett., Vol. 96, No. 6, 063903-063906, 2006.
doi:10.1103/PhysRevLett.96.063903

23. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 282, 77-79, 2001.
doi:10.1126/science.1058847

24. Ward, A. J., J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys.: Condens. Matter, Vol. 7, 2217-2224, 1995.
doi:10.1088/0953-8984/7/10/027

25. Scalora, M., M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J. Appl. Phys., Vol. 83, No. 5, 2377-2383, 1998.
doi:10.1063/1.366996

26. Bloemer, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, No. 14, 1676-1678, 1998.
doi:10.1063/1.121150

27. Feng, S., J. M. Elson, and P. L. Overfelt, "Transparent photonic band in metallodielectric nanostructures," Phys. Rev. B, Vol. 72, No. 8, 085117-085122, 2005.
doi:10.1103/PhysRevB.72.085117

28. Xu, X., Y. Xi, D. Han, X. Liu, J. Zi, and Z. Zhu, "Effective plasma frequency in one-dimensional metallic-dielectric photonic crystals ," Appl. Phys. Lett., Vol. 86, 09112-09114, 2005.

29. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.

30. Yeh, P., A. Yariv, and C. H. Hong, "Electromagnetic propagation in periodic startified media. I. General theory," J. Opt. Soc. A, Vol. 67, No. 4, 423-438, 1977.
doi:10.1364/JOSA.67.000423

31. Bergmair, M., M. Huber, and K. Hingerl, "Band structure, Wiener bounds, and coupled surface plasmons in one dimensional photonic crystals," Appl. Phys. Lett., Vol. 89, 081907-081909, 2006.
doi:10.1063/1.2338546