Vol. 13
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-08-17
FDTD Modeling and Simulation of Microwave Heating of in-Shell Eggs
By
Progress In Electromagnetics Research M, Vol. 13, 229-243, 2010
Abstract
Considering microwaves as a viable alternative for the pasteurization of In-shell eggs, preliminary trials performed had confirmed that microwave at 2450 MHz can be successfully used to raise the temperature of in-shell eggs to the required pasteurization temperatures in a few minutes. Based on these trials a finite difference time domain (FDTD) model was developed using C language and MATLAB to simulate the E field and power distribution in lossy dielectric media like that of the egg components (egg white and yolk) taking into consideration the complex shape, dielectric properties and heterogeneous composition of the in-shell egg. This can be used to assist in the design and development of an industrial microwave in-shell eggs pasteurization unit.
Citation
Satyanarayan R. S. Dev Yvan Gariepy Valerie Orsat Vijaya G. S. Raghavan , "FDTD Modeling and Simulation of Microwave Heating of in-Shell Eggs," Progress In Electromagnetics Research M, Vol. 13, 229-243, 2010.
doi:10.2528/PIERM10072609
http://www.jpier.org/PIERM/pier.php?paper=10072609
References

1. Dev, S. R. S., G. S. V. Raghavan, and Y. Gariepy, "Dielectric properties of egg components and microwave heating for in-shell pasteurization of eggs," Journal of Food Engineering, Vol. 86, No. 2, 207-214, 2008.
doi:10.1016/j.jfoodeng.2007.09.027

2. Fu, W. and A. Metaxas, "Numerical prediction of three-dimensional power density distribution in a multimode cavity," J. Microwave Power and Electromagnetic Energy, Vol. 29, No. 2, 67-75, 1994.

3. Harms, P. H., Y. Chen, R. Mittra, and Y. Shimony, "Numerical modeling of microwave heating systems," J. Microwave Power and Electromagnetic Energy, Vol. 31, No. 2, 114-121, 1996.

4. Meredith, R. J., "A three axis model of the mode structure of multimode cavities," J. Microwave Power and Electromagnetic Energy, Vol. 29, No. 1, 31-44, 1994.

5. Zhou, L., V. M. Puri, R. C. Anantheswaran, and G. Yeh, "Finite element modeling of heat and mass transfer in food materials during microwave heating --- Model development and validation," Journal of Food Engineering, Vol. 25, 509-529, 1995.
doi:10.1016/0260-8774(94)00032-5

6. Ma, L., D. L. Paul, and N. Pothecary, "Experimental validation of combined electromagnetic and thermal FDTD model of a microwave heating process," IEEE Transactions on Microwave Theory and Technologies, Vol. 43, No. 11, 2565-2572, 1995.
doi:10.1109/22.473179

7. Dai, J., FDTD simulation of microwave distribution and assist in the design of scaled-up microwave-assisted extraction and synthesis equipment chapter X in dissertation: Microwave-assisted extraction and synthesis studies and the scale-up study with the aid of FDTD simulation, Department of Bioresource Engg., McGill University, Canada. Accessible at http://webpages.mcgill.ca/staff/deptshare/FAES/066-Bioresource/ Theses/theses/332JianmingDai2006/332JianmingD-ai2006.pdf, 2006.

8. Mittra, R. and P. H. Harms, "A new finite-difference-time-domain (FDTD) algorithm for efficient field computation in resonator narrow-band structures," IEEE Microwave Guided Wave Lett., Vol. 3, 316-318, 1993.
doi:10.1109/75.244864

9. Sullivan, M. D., "Electromagnetic simulation using the FDTD method," IEEE Press Series on RF and Microwave Technology, New York, 2000.

10. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, New York, ISBN:0471170968, 1998.

11. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 17, 585-589, 1996.