Vol. 14
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-11-07
Characteristics Analysis of Repetition Frequency High-Power Microwave Pulses in Atmosphere
By
Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010
Abstract
A semi-analytical model for the propagation of the repetition frequency high power microwave (HPM) pulses is established. The effects of different parameters of the repetition frequency HPM pulses on air breakdown are analyzed. A critical repetition frequency for the HPM pulse is presented under which the electron density does not exceed that of the air breakdown when the individual pulse arrives. The prediction for the critical repetition frequency and the threshold of the air breakdown due to the repetition frequency HPM pulses is demonstrated with several numerical simulations.
Citation
Tao Tang, Cheng Liao, and Wenbin Lin, "Characteristics Analysis of Repetition Frequency High-Power Microwave Pulses in Atmosphere," Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010.
doi:10.2528/PIERM10092010
References

1. Pai, S. T. and Q. Zhang, Introduction to High Power Pulse Technology, World Scientific, 1995.

2. Martin, T. H., M. Williams, and M. Kristiansen, "J. C. Martin on Pulsed Power," Plenum Press, 1996.        Google Scholar

3. Kitsanov, S. A., A. I. Klimov, S. D. Korovin, I. K. Kurkan, I. V. Pegel, and S. D. Polevin, "A vircator with electron beam premodulation based on high-current repetitively pulse accelerator," IEEE Transactions on Plasma Science, Vol. 30, No. 1, 278-285, 2002.
doi:10.1109/TPS.2002.1003871        Google Scholar

4. Soliman, M. S., T. Morimoto, and Z. I. Kawasaki, "Three-dimensional localization system for impulsive noise sources using ultra-wideband digital interferometer technique," Journal of Elelctromagnetics Wave and Applications, Vol. 20, No. 4, 515-530, 2006.
doi:10.1163/156939306776117027        Google Scholar

5. Golestani-Rad, L. and J. Rashed-Mohassel, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The transfer function concept," Journal of Elelctromagnetics Wave and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851        Google Scholar

6. Hwang, S. M., J. I. Hong, and C. S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008.
doi:10.2528/PIER07121704        Google Scholar

7. Mesyats, G. A., V. G. Shpak, M. I. Yalandin, and S. A. Shunailov, "Compact high-current repetitive pulse accelerators," Pulse Power Conf., 73-77, San Diego, USA, Jun. 1991.        Google Scholar

8. Cao, J. K., D. F. Zhou, Z. X. Niu, Y. Shao, W. Zou, and Z. W. Xing, "Air breakdown by repetition-rate high power microwave pulse," High Power Laser and Particle Beams, Vol. 18, No. 1, 115-118, 2006.        Google Scholar

9. Hu, T., D. F. Zhou, Q. R. Li, and Z. X. Niu, "Effect of electronic relaxation process on air breakdown caused by repetition frequency HPM," High Power Laser And Particle Beams, Vol. 21, No. 4, 545-549, 2009.        Google Scholar

10. Kuo, S. P., Y. S. Zhang, and K. Paul, "Propagation of high power microwave pulses in air breakdown environment," Phys. Fluids, Vol. 133, No. 10, 2906-2912, 1991.        Google Scholar

11. Duan, Y. Y. and Y. S. Chen, "Air breakdown of high power microwave pulse and its effect on transmitted energy," Journal of Microwaves, Vol. 16, No. 3, 260-264, 2000.        Google Scholar

12. Woo, W. and J. S. DeGroot, "Micowave absorption and plasma heating due to microwave breakdown in the atmosphere," Phys. Fluids, Vol. 27, No. 2, 475-487, 1984.
doi:10.1063/1.864645        Google Scholar

13. Yee, J. H., D. J. Mayhall, G. E. Sieger, and R. A. Alvarez, "Propagation of intense microwave pulses in air and in a waveguide," IEEE Trans. on Antennas and Propagation, Vol. 39, No. 9, 1421-1426, 1991.
doi:10.1109/8.99053        Google Scholar

14. MacDonald, A. D., "Microwave Breakdown in Gases," Wiley, 1966.        Google Scholar

15. Niu, Z. X., D. J. Yu, J. H. Yang, D. F. Zhou, and D. T. Hou, "Non-linear attenuation of high power microwave propagation in atmosphere," Journal of Information Engineering University, Vol. 5, No. 2, 115-117, 2004.        Google Scholar

16. Anderson, D. and M. Lisak, "Breakdown in air-filled microwave waveguides during pulsed operation," J. Appl. Phys., Vol. 56, No. 5, 1414-1419, 1984.
doi:10.1063/1.334140        Google Scholar

17. Hou, D. T., D. F. Zhou, Z. X. Niu, and Z. Q. Yu, "Effect on air refraction index by effective electric-field intensity in high power microwave propagation," High Power Laser And Particle Beams, Vol. 16, No. 9, 1183-1185, 2004.        Google Scholar

18. Lófgren, M., D. Anderson, M. Lisak, and L. Lundgren, "Breakdown-induced distortion of high-power microwave pubes in air," Phys. Fluids, Vol. B3, No. 12, 3528-3531, 1991.        Google Scholar

19. Tang, T., C. Liao, and D. Yang, "Feasibility study of solving high-power microwave propagation in the atmosphere using FDTD method," Chinese Journal of Radio Science, Vol. 25, No. 1, 122-126, 2010.        Google Scholar

20. Scholfield, D. W., J. M. Gahl, and N. Shimomura, "Effective electric field for an arbitrary electromagnetic pulse," IEEE Trans. on Plasma Science, Vol. 27, No. 2, 628-632, 1999.
doi:10.1109/27.772295        Google Scholar

21. Ali, A. W., "Nanosecond air breakdown parameters for electron and microwave beam propagation," Laser and Particle Beams, Vol. 6, 105-117, 1988.
doi:10.1017/S0263034600003840        Google Scholar