Vol. 16
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-06
Subgridding Technique for the Geodesic FDTD Algorithm
By
Progress In Electromagnetics Research M, Vol. 16, 133-144, 2011
Abstract
This work presents a two-dimensional (2D) subgrid technology for the geodesic finite different time-domain (FDTD) algorithm, which is applied to solve global extremely low frequency (ELF) electromagnetic EM wave propagation problems in the Earth-ionosphere system. The new technology provides arbitrarily locale resolution to study finer structure without disturb the global grid structure. Combined with the subgrid technique, the new geodesic FDTD algorithm can solve EM propagation problems in specific locale regions without extra computational burden. Based on the original geodesic FDTD formulations, the 2D subgrid technique is developed, and its computational stable relation is derived and analyzed. Then, possible three-dimensional (3D) subgrid structure is proposed. Finally, potential applications for the subgrid technique are suggested.
Citation
Yi Wang Qunsheng Cao , "Subgridding Technique for the Geodesic FDTD Algorithm," Progress In Electromagnetics Research M, Vol. 16, 133-144, 2011.
doi:10.2528/PIERM10110902
http://www.jpier.org/PIERM/pier.php?paper=10110902
References

1. Simpson, J. J., "Current and future applications of 3-D global earth-ionosphere models based on the full-vector Maxwell's Equations FDTD method," Surveys in Geophysics, Vol. 30, 105-130, 2009.
doi:10.1007/s10712-009-9063-5

2. Sevgi, L., F. Akleman, and L. Felsen, "Groundwave propagation modeling: Problem-matched analytical formulations and direct numerical techniques," IEEE Antennas and Propagation Magazine, Vol. 44, 55-75, 2002.
doi:10.1109/74.997903

3. Berenger, J., "Long range propagation of lightning pulses using the FDTD method," IEEE Transactions on Electromagnetic, Vol. 47, 1008-1012, 2005.
doi:10.1109/TEMC.2005.858747

4. Hu , W. and S. Cummer, "An FDTD model for low and high altitude lightning-generated EM fields," IEEE Transactions on Antennas and Propagation, Vol. 54, 1513-1522, 2006.
doi:10.1109/TAP.2006.874336

5. Soriano, A. , E. Navarro, D. Paul, and J. Porti, "Finite difference time domain simulation of the Earth-ionosphere resonant cavity: Schumann resonances," IEEE Transactions on Antennas and Propagation, Vol. 53, 1535-1541, 2005.
doi:10.1109/TAP.2005.844415

6. Yang, H., V. P. Pasko, and G. Satori, "Seasonal variations of global lightning activity extracted from Schumann resonances using a genetic algorithm method," Journal of Geophysical Research, Vol. 114, 1-10, 2009.
doi:10.1029/2008JC005084

7. Simpson, J. J. and A. Taflove, "E±cient modeling of impulsive ELF antipodal propagation about the earth sphere using an optimized two-dimensional geodesic FDTD grid," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 215-218, 2004.
doi:10.1109/LAWP.2004.834936

8. Simpson, J. J. and A. Taflove, "ELF radar system proposed for localized D-region ionospheric anomalies," IEEE Geoscience and Remote Sensing Letters, Vol. 3, 500-503, 2006.
doi:10.1109/LGRS.2006.878443

9. Simpson, J. J., R. Heikes, and A. Taflove, "FDTD modeling of a novel ELF radar for major oil deposits using a three-dimensional geodesic grid of the earth-ionosphere waveguide," IEEE Transactions on Antennas and Propagation, Vol. 54, 1734-1741, 2006.
doi:10.1109/TAP.2006.875504

10. Holland , R., "THREDS: A finite-difference time-domain EMP code in 3D spherical coordinates," IEEE Transactions on Nuclear Science, Vol. 30, 4592-4595, 1983.
doi:10.1109/TNS.1983.4333177

11. Simpson, J. J., "Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-earth FDTD solution of Maxwell's equations," Geophysical Research Letters, Vol. 32, 1-4, 2005.

12. Simpson, J. J. and A. Taflove, "Two-dimensional FDTD model of antipodal ELF propagation and Schumann resonance of the Earth," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 53-56, 2002.
doi:10.1109/LAWP.2002.805123

13. Bannister , P., "ELF propagation update," IEEE Journal of Oceanic Engineering, Vol. 9, 179-188, 1984.
doi:10.1109/JOE.1984.1145609

14. Wang, Y. , H. Xia, and Q. Cao, "Analysis of ELF attenuation rate using the geodesic FDTD algorithm," 2010 International Conference on Microwave and Millimeter Wave Technology, 1413-1415, 2010.
doi:10.1109/ICMMT.2010.5524765

15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.

16. Xia, H. , Y. Wang, and Q. Cao, "Local high-resolution technique in FDTD modeling of ELF propagation in the earth ionosphere cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 649-652, 2010.
doi:10.1109/LAWP.2010.2053343

17. Wang, Y., H. Xia, and Q. Cao, "Analysis of ELF propagation along the earth surface using the FDTD model based on the spherical triangle meshing," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1017-1020, 2009.
doi:10.1109/LAWP.2009.2031661