Vol. 16
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-01-20
Analysis of 3-Dimensional Electromagnetic Fields in Dispersive Media Using CUDA
By
Progress In Electromagnetics Research M, Vol. 16, 185-196, 2011
Abstract
This research presents the implementation of the Finite-Difference Time-Domain (FDTD) method for the solution of 3-dimensional electromagnetic problems in dispersive media using Graphics Processor Units (GPUs). By using the newly introduced CUDA technology, we illustrate the efficacy of GPUs in accelerating the FDTD computations by achieving appreciable speedup factors with great ease and at no extra hardware/software cost. We validate our approach by comparing the results with their corresponding simulated results obtained from Remcom's XFDTD software.
Citation
Mohammad Zunoubi, and Jason Payne, "Analysis of 3-Dimensional Electromagnetic Fields in Dispersive Media Using CUDA," Progress In Electromagnetics Research M, Vol. 16, 185-196, 2011.
doi:10.2528/PIERM10112506
References

1. Yu, W., R. Mittra, T. Su, Y. Liu, and X. Yang, "Parallel Finite-Difference Time-Domain Method," Artech House, July 2006.

2. NVIDIA CUDA compute unified device architecture programming guide, 3.2, NVIDIA Corporation, Nov. 2010.

3. Balevic, A., L. Rockstroh, A. Tausendfreund, S. Patzelt, G. Goch, and S. Simon, "Accelerating simulations of light scattering based on finite-difference time-domain method with general purpose GPUs," Proc. IEEE CSE'08, 11th IEEE Int. Conference on Computational Science and Engr., 16-18, S~ao Paulo, Brazil, July 2008.

4. Valcarce , A., G. De La Roche, A. Juttner, D. Lopez-Perez, and J. Zhang, "Applying FDTD to the coverage prediction of WiMAX femtocells," Eurasip Journal of Wireless Communications and Networking. Special issue: Advances in Propagat. Modeling for Wireless Systems, Feb. 2009.

5. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Trans. Magnetics, Vol. 45, No. 3, 1324-1327, Mar. 2009.
doi:10.1109/TMAG.2009.2012614

6. Demir, V., "Performance analysis of CUDA implementation of FDTD on Tesla GPU using double precision arithmetic," 2010 USNC-URSI National Radio Science Meeting, Boulder, CO, Jan. 6-9, 2010.

7. Ong , C. Y., M. Weldon, S. Quiring, L. Maxwell, M. C. Hughes, C. Whelan, and M. Okoniewski, "Speed it up," IEEE Microwave Magazine, Vol. 11, No. 2, Apr. 2010.
doi:10.1109/MMM.2010.935776

8. Roden, A. and S. D. Gedney, "Convolutional PML (CPML): An e±cient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Opt. Tech. Letters, Vol. 27, 334-339, June 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, 2000.

10. Giles, M., "Jacobi iteration for a Laplace discretization on a 3d structured grid," Technical Report, 2008.

11. Simicevic, N., "Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses," Phys. Med. Biol., Vol. 50, No. 21, 5041-5053, Nov. 2005.
doi:10.1088/0031-9155/50/21/007

12. Zunoubi, , M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media," IEEE Antennas Wireless Propagat. Lett., Vol. 9, 756-759, Sept. 2010.
doi:10.1109/LAWP.2010.2060181