Vol. 17
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-02-14
Accurate Modeling of Coupling Junctions in Dielectric Covered Waveguide Slot Arrays
By
Progress In Electromagnetics Research M, Vol. 17, 59-71, 2011
Abstract
This paper investigate the near-field interaction between the coupling slot and the radiating ones in a dielectric-covered waveguide slot array environment. This interaction can strongly affect the array aperture distribution and input match, mainly when each radiating guide contains few slots or the slot offsets are small. We propose a full-wave Method of Moments approach, taking also into account the waveguide wall thickness, to evaluate this interaction. The use of entire domain basis functions allows to get a small and well-conditioned linear system. The results presented in this paper show that the coupling due to high-order modes in the region of the junction can significantly modify the radiating slot voltage, mainly when the offset is small, and also the array input match, though to a lesser extent.
Citation
Giuseppe Mazzarella, and Giorgio Montisci, "Accurate Modeling of Coupling Junctions in Dielectric Covered Waveguide Slot Arrays," Progress In Electromagnetics Research M, Vol. 17, 59-71, 2011.
doi:10.2528/PIERM10122804
References

1. Elliott, R. S., "An improved design procedure for small arrays of shunt slots," IEEE Trans. Antennas Propagat., Vol. 31, 48-53, 1983.
doi:10.1109/TAP.1983.1143002

2. Elliott, R. S. and W. R. O'Loughlin, "The design of slot arrays including internal mutual coupling," IEEE Trans. Antennas Propagat., Vol. 34, 1149-1154, 1986.
doi:10.1109/TAP.1986.1143947

3. Mazzarella, G. and G. Panariello, "Evaluation of the edge effects in slot arrays using the geometrical theory of diffraction," IEEE Trans. Antennas Propagat., Vol. 37, 392-395, 1989.
doi:10.1109/8.18737

4. Rengarajan, R. S. and G. M. Shaw, "Accurate characterization of coupling junctions in waveguide-fed planar slot arrays," IEEE Trans. Microwave Theory Technique, Vol. 42, 2239-2247, 1994.
doi:10.1109/22.339748

5. Katehi, P. B., "Dielectric-covered waveguide longitudinal slots with finite wall thickness," IEEE Trans. Antennas Propagat., Vol. 38, 1039-1045, 1990.
doi:10.1109/8.55615

6. Mazzarella, G. and G. Montisci, "A rigorous analysis of dielectric-covered narrow longitudinal shunt slots with finite wall thickness," Electromagnetics, Vol. 19, 407-418, 1999.
doi:10.1080/02726349908908660

7. Mazzarella, G. and G. Montisci, "Full-wave analysis of dielectric-covered radiating series slots," Microwave and Optical Technology Letters, Vol. 20, 67-72, 1999.
doi:10.1002/(SICI)1098-2760(19990105)20:1<67::AID-MOP18>3.0.CO;2-5

8. Mondal, M. and A. Chakraborty, "Resonant length calculation and radiation pattern synthesis of longitudinal slot antenna in rectangular waveguide," Progress In Electromagnetics Research Letters, Vol. 3, 187-195, 2008.
doi:10.2528/PIERL08042204

9. Mazzarella, G. and G. Montisci, "Wideband equivalent circuit of a centered-inclined waveguide slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 1, 133-151, 2000.
doi:10.1163/156939300X00671

10. Casula, G. A., G. Mazzarella, and G. Montisci, "Effective analysis of a microstrip slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 1203-1217, 2004.
doi:10.1163/1569393042955333

11. Zawadzki, M., S. Rengarajan, R. E. Hodges, and J. Chen, "Lowsidelobe slot arrays for the Juno microwave radiometer," IEEE Antennas and Propagat. Society Int. Symp., Vol. 1, 1-4, 2010.
doi:10.1109/APS.2010.5561812

12. Casula, G. A. and G. Montisci, "Design of dielectric-covered planar arrays of longitudinal slots," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 752-755, 2009.
doi:10.1109/LAWP.2009.2021963